1,915 research outputs found

    Ground states and excited states of hypernuclei in Relativistic Mean Field approach

    Full text link
    Hypernuclei have been studied within the framework of Relativistic Mean Field theory. The force FSU Gold has been extended to include hyperons. The effective hyperon-nucleon and nucleon-nucleon interactions have been obtained by fitting experimental energies in a number of hypernuclei over a wide range of mass. Calculations successfully describe various features including hyperon separation energy and single particle spectra of single-\Lambda hypernuclei throughout the periodic table. We also extend this formalism to double-\Lambda hypernuclei.Comment: 16 pages,3 figure

    Distribution of the S-matrix in chaotic microwave cavities with direct processes and absorption

    Full text link
    We quantify the presence of direct processes in the S-matrix of chaotic microwave cavities with absorption in the one-channel case. To this end the full distribution P_S(S) of the S-matrix, i.e. S=\sqrt{R}e^{i\theta}, is studied in cavities with time-reversal symmetry for different antenna coupling strengths T_a or direct processes. The experimental results are compared with random-matrix calculations and with numerical simulations based on the Heidelberg approach including absorption. The theoretical result is a generalization of the Poisson kernel. The experimental and the numerical distributions are in excellent agreement with random-matrix predictions for all cases.Comment: 4 pages, 4 figure

    Experimental determination of the absorption strength in absorbing chaotic cavities

    Full text link
    Due to the experimental necessity we present a formula to determine the absorption strength by power losses inside a chaotic system (cavities, graphs, acoustic resonators, etc) when the antenna coupling, always present in experimental measurements, is taken into account. This is done by calculating the average of the absorption coefficient as a function of the absorption strength and the coupling of the antenna to the system, in the one channel case.Comment: 6 pages, 3 figures, Submitted to Phys. Rev.

    Statistical fluctuations of the parametric derivative of the transmission and reflection coefficients in absorbing chaotic cavities

    Full text link
    Motivated by recent theoretical and experimental works, we study the statistical fluctuations of the parametric derivative of the transmission T and reflection R coefficients in ballistic chaotic cavities in the presence of absorption. Analytical results for the variance of the parametric derivative of T and R, with and without time-reversal symmetry, are obtained for both asymmetric and left-right symmetric cavities. These results are valid for arbitrary number of channels, in completely agreement with the one channel case in the absence of absorption studied in the literature.Comment: Modified version as accepted in PR

    Observation of electronic and atomic shell effects in gold nanowires

    Get PDF
    The formation of gold nanowires in vacuum at room temperature reveals a periodic spectrum of exceptionally stable diameters. This is identified as shell structure similar to that which was recently discovered for alkali metals at low temperatures. The gold nanowires present two competing `magic' series of stable diameters, one governed by electronic structure and the other by the atomic packing.Comment: 4 pages, 4 figure

    Chaotic scattering with direct processes: A generalization of Poisson's kernel for non-unitary scattering matrices

    Full text link
    The problem of chaotic scattering in presence of direct processes or prompt responses is mapped via a transformation to the case of scattering in absence of such processes for non-unitary scattering matrices, \tilde S. In the absence of prompt responses, \tilde S is uniformly distributed according to its invariant measure in the space of \tilde S matrices with zero average, < \tilde S > =0. In the presence of direct processes, the distribution of \tilde S is non-uniform and it is characterized by the average (\neq 0). In contrast to the case of unitary matrices S, where the invariant measures of S for chaotic scattering with and without direct processes are related through the well known Poisson kernel, here we show that for non-unitary scattering matrices the invariant measures are related by the Poisson kernel squared. Our results are relevant to situations where flux conservation is not satisfied. For example, transport experiments in chaotic systems, where gains or losses are present, like microwave chaotic cavities or graphs, and acoustic or elastic resonators.Comment: Added two appendices and references. Corrected typo

    Second order equation of motion for electromagnetic radiation back-reaction

    Get PDF
    We take the viewpoint that the physically acceptable solutions of the Lorentz--Dirac equation for radiation back-reaction are actually determined by a second order equation of motion, the self-force being given as a function of spacetime location and velocity. We propose three different methods to obtain this self-force function. For two example systems, we determine the second order equation of motion exactly in the nonrelativistic regime via each of these three methods, the three methods leading to the same result. We reveal that, for both systems considered, back-reaction induces a damping proportional to velocity and, in addition, it decreases the effect of the external force.Comment: 13 page

    Quantum Hall Resistance Overshoot in 2-Dimensional Electron Gases - Theory and Experiment

    Get PDF
    We present a systematical experimental investigation of an unusual transport phenomenon observed in two dimensional electron gases in Si/SiGe heterostructures under integer quantum Hall effect (IQHE) conditions. This phenomenon emerges under specific experimental conditions and in different material systems. It is commonly referred to as Hall resistance overshoot, however, lacks a consistent explanation so far. Based on our experimental findings we are able to develop a model that accounts for all of our observations in the framework of a screening theory for the IQHE. Within this model the origin of the overshoot is attributed to a transport regime where current is confined to co-existing evanescent incompressible strips of different filling factors.Comment: 26 pages, 10 figure

    Statistical wave scattering through classically chaotic cavities in the presence of surface absorption

    Full text link
    We propose a model to describe the statistical properties of wave scattering through a classically chaotic cavity in the presence of surface absorption. Experimentally, surface absorption could be realized by attaching an "absorbing patch" to the inner wall of the cavity. In our model, the cavity is connected to the outside by a waveguide with N open modes (or channels), while an experimental patch is simulated by an "absorbing mirror" attached to the inside wall of the cavity; the mirror, consisting of a waveguide that supports Na channels, with absorption inside and a perfectly reflecting wall at its end, is described by a subunitary scattering matrix Sa. The number of channels Na, as a measure of the geometric cross section of the mirror, and the lack of unitarity of Sa as a measure of absorption, are under our control: these parameters have an important physical significance for real experiments. The absorption strength in the cavity is quantified by the trace of the lack of unitarity. The statistical distribution of the resulting S matrix for N=1 open channel and only one absorbing channel, Na =1, is solved analytically for the orthogonal and unitary universality classes, and the results are compared with those arising from numerical simulations. The relation with other models existing in the literature, in some of which absorption has a volumetric character, is also studied.Comment: 6 pages, 3 figures, submitted to Phys. Rev.
    • …
    corecore