2,038 research outputs found

    The Prototypical Young L/T-Transition Dwarf HD 203030B Likely Has Planetary Mass

    Full text link
    Upon its discovery in 2006, the young L7.5 companion to the solar analog HD 203030 was found to be unusual in being ≈\approx200 K cooler than older late-L dwarfs. HD 203030B offered the first clear indication that the effective temperature at the L-to-T spectral type transition depends on surface gravity: now a well-known characteristic of low-gravity ultra-cool dwarfs. An initial age analysis of the G8V primary star indicated that the system was 130--400 Myr old, and so the companion between 12--31 MJupM_{\rm Jup}. Using moderate resolution near-infrared spectra of HD 203030B, we now find features of very low gravity comparable to those of 10--150 Myr-old L7--L8 dwarfs. We also obtained more accurate near infrared and {\sl Spitzer}/IRAC photometry, and find a (J−K)MKO(J-K)_{\rm MKO} color of 2.56±0.132.56\pm0.13 mag---comparable to those observed in other young planetary-mass objects---and a luminosity of log(Lbol/L⊙L_{\rm bol}/L_{\odot}) = −4.75±0.04\,=\,-4.75\pm0.04 dex. We further reassess the evidence for the young age of the host star, HD 203030, with a more comprehensive analysis of the photometry and updated stellar activity measurements and age calibrations. Summarizing the age diagnostics for both components of the binary, we adopt an age of 100 Myr for HD 203030B and an age range of 30--150 Myr. Using cloudy evolutionary models, the new companion age range and luminosity result in a mass of 11 MJupM_{\rm Jup} with a range of 8--15 MJupM_{\rm Jup}, and an effective temperature of 1040±501040\pm50 K.Comment: 12 pages, 7 figures, accepted for publication in A

    A small deformations effective stress model of gradient plasticity phase-field fracture

    Get PDF
    A variational formulation of small strain ductile fracture, based on a phase-field modeling of crack propagation, is proposed. The formulation is based on an effective stress description of gradient plasticity, combined with an AT1 phase-field model. Starting from established variational statements of finite-step elastoplasticity for generalized standard materials, a mixed variational statement is consistently derived, incorporating in a rigorous way a variational finite-step update for both the elastoplastic and the phase-field dissipations. The complex interaction between ductile and brittle dissipation mechanisms is modeled by assuming a plasticity driven crack propagation model. A non-variational function of the equivalent plastic strain is then introduced to modulate the phase-field dissipation based on the developed plastic strains. Particular care has been devoted to the formulation of a consistent Newton–Raphson scheme for the case of Mises plasticity, with a global return mapping and relative tangent matrix, supplemented by a line-search scheme, for the solution of the gradient elastoplasticity problem for fixed phase field. The resulting algorithm has proved to be very robust and computationally effective. Application to several benchmark tests show the robustness and accuracy of the proposed model

    Impacting of droplets on moving surface and inclined surfaces

    Get PDF
    Drop impact onto inclined and moving surfaces are seen in various applications, for example, inkjet printing, spray coating, or in agriculture; droplets impact on either the surface that is moving, inclined, or a combination of both. Studies in the literature have examined the phenomenon of drop impact in isolation, either for a moving surface, or an inclined surface. Therefore, we conducted a comparative study for drop impact onto moving and inclined surfaces to see if they can be considered as equivalent systems. We used high speed imaging and examined the spreading and splashing of droplet impact onto both inclined and moving surfaces, having the same normal and tangential (in-plane) velocities. Various liquids with viscosities and surface tensions in the range of 1-5 cSt 17.4-72.8 mNm, respectively, were used. We demonstrated that both systems are equivalent to one another, considering either the initial spreading behavior of droplets, or splashing. Different types of splashing seen on inclined and moving surfaces are similar regardless of system. Finally, a new type of splashing named "split splashing"was also reported. This type of splashing is seen only when the normal velocity relative to tangential velocity is very low

    Is drop impact the same for both moving and inclined surfaces?

    Get PDF
    Drop impact is an important phenomenon in a wide variety of applications. Researchers have largely examined drop impact onto a moving surface, and an inclined surface separately. Given that in both systems the impact phenomenon is influenced by tangential and normal velocity components, the question remains, if these two systems are essentially equivalent or gravity and boundary layer effects are such that the outcomes will be different. Experiments have been performed by varying liquid surface tension, viscosity and both normal and tangential velocities (0.3 to 2.9 m/s). The desired velocity components were achieved by changing the height where drop is released, the surface inclination angle for inclined system, and the horizontal velocity for the moving surface. To compare the systems, spreading was analyzed by measuring the width and length of the lamella at various time intervals; for splashing, top view images were compared to see the extent of splashing at initial stage. The data suggests that, for the given velocity, neither the boundary layer differences between the two systems nor the gravity play a role on spreading and splashing of the drop, as such one system can replace the other for future studies

    Observational evidences on the modulation of the South American Low Level Jet east of the Andes according the ENSO variability

    Get PDF
    The differences on the phase and wavelength of the quasi-stationary waves over the South America generated by El Niño (EN) and La Niña (LN) events seem to affect the daily evolution of the South American Low Level Jet east of the Andes (SALLJ). For the austral summer period of 1977–2004 the SALLJ episodes detected according to Bonner criterion 1 show normal to above-normal frequency in EN years, and in LN years the episodes show normal to below-normal frequency. <br><br> During EN and LN years the SALLJ episodes were associated with positive rainfall anomalies over the La Plata Basin, but more intense during LN years. During EN years the increase in the SALLJ cases were associated to intensification of the Subtropical Jet (SJ) around 30° S and positive Sea Level Pressure (SLP) anomalies over the western equatorial Atlantic and tropical South America, particularly over central Brazil. This favored the intensification of the northeasterly trade winds over the northern continent and it channeled by the Andes mountain to the La Plata Basin region where negative SLP are found. The SALLJ cases identified during the LN events were weaker and less frequent when compared to those for EN years. In this case the SJ was weaker than in EN years and the negative SLP anomalies over the tropical continent contributed to the inversion of the northeasterly trade winds. Also a southerly flow anomaly was generated by the geostrophic balance due to the anomalous blocking over southeast Pacific and the intense cyclonic transient over the southern tip of South America. As result the warm tropical air brought by the SALLJ encounters the cold extratropical air from the southerly winds over the La Plata basin. This configuration can increase the conditional instability over the La Plata basin and may explain the more intense positive rainfall anomalies in SALLJ cases during LN years than in EN years
    • …
    corecore