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ABSTRACT 

 

There is a growing interest and debate on the role of surface coatings to combat ice accretion on solid 

surfaces. Most of the studies have focused on “icephobicity”, with the aim of either reducing ice adhesion 

strength or delaying freezing time. Here we present an alternative strategy, which relies on the 

superhydrophobicity of surfaces as a way to enhance liquid water shedding from a surface prior to freezing. 

To show in which conditions liquid water drops can rebound and be shed from a solid surface before 

freezing, drop impact experiments were performed on solid targets characterized by different wettability and 

thermal properties. The main result is that, when frost formation is avoided on the surfaces (i.e. if surface 

temperature is above dew point), drop dynamics remains unaffected by solidification effects. In particular, 

drop rebound can still be achieved down to -20°C. 

 

KEY WORDS: Two-phase/Multiphase flow, drop impact, superhydrophobicity, icephobicity, icing mitigation, 

anti-icing coating 

 

 

1. INTRODUCTION 
 

Icing on structures represents a severe risk for human safety and has a significant economic impact on 

operation costs in many different areas such as aeronautics [1], power systems (e.g. wind turbines [2] and 

electric power transmission lines [3]), civil construction, and oil platforms to name a few. Atmospheric icing 

typically occurs when water drops (even in supercooled conditions, i.e. with a temperature below 0°C) hit a 

surface, stick to it and freeze, causing ice accretion. The negative effects of icing are related to aerodynamic 

penalties (e.g. on aircraft wings), unpredicted loads and vibrations carrying fatigue damages for structures, 

and risk of ice shedding, which can lead to safety problems.  

To combat icing, several ice protection systems have been designed and implemented, which can be 

grouped into three categories, in the order of increasing energy requirements (see Table 1). They are: (i) de-

icing systems, which allow partial ice accretion and cyclical ice removal; (ii) running wet anti-icing systems, 

by which water is maintained liquid, typically by heating areas where drop impacts, and (iii) evaporative 

anti-icing systems, which totally prevent ice and liquid water accumulation in the drop collection area and 

hence also avoid runback ice (i.e. ice formed by liquid water flowing onto unprotected areas). Although 

generally effective, most of ice protection systems rely on thermal energy and may require heat fluxes up to 

25kW/m
2
. As such, new strategies to avoid ice accretion would be desirable, with the goal of increasing 
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safety and reducing energy requirements. In particular, a continuously increasing number of papers [6-23] 

has focused in the last years on the potentiality of coating strategies as a way to decrease, delay or inhibit ice 

accretion on a solid surface. 

 

 

Table 1: Standard ice protection systems 

Ice protection 

systems 

Operational conditions Energy 

requirements 

De-icing systems Allow partial ice accretion, and 

removal is cyclically performed 

lowest 

Running wet 

anti-icing systems 

Water is maintained liquid, 

typically by heating areas in drop 

collection areas 

medium 

Evaporative 

anti-icing systems 

Avoiding ice accretion in the drop 

collection area and hence also 

runback ice (i.e. ice formed by 

liquid water flowing onto 

unprotected areas) 

highest 

(up to 25kW/m
2
) 

 

 

 
Fig. 1: Schematic of different icing mitigation coating strategies. 

 

 

 

 Application of coating strategies has opened a debate in the literature about different icing mitigation 

strategies. Most of studies focus on surface icephobicity, with the goal of either lowering ice adhesion 

[8,9,11], reducing heterogeneous nucleation temperature  [16], or of freezing delay  (i.e. the time needed 

before a supercooled drop freezes on the surface) [7,22], as schematically illustrated in Fig. 1. An alternative 

strategies is based on exploting surface superhydrophobicity, with the goal enhancing drop shedding by 

means of drop rebound [28] and drop roll-off [30]  (see Fig. 1), before water can freeze on the solid surface. 

In particular, our focus here was to study the conditions for rebound of liquid water drops in freezing 

conditions. 

Looking at the recent literature, several types of studies, either related to fundamental science of water 

and ice interaction with a surface  [7,13-17,21,23], or to engineering evaluation by means of wind tunnel 

tests [19], can be found. In most of the cases, results appear contrasting, at least at a first glance. The reason 

for such discrepancies are related to lack of agreement in the definition of icephobicity, since different 

mechanisms were investigated (see Fig. 1), and due to the wide variety of test methods and environmental 
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conditions: e.g. in ice adhesion tests, ice can be formed on the surface either by accreting ice by 

accumulation of impacting water drops [6] or forming an ice block by freezing liquid water poured onto the 

substrate [11,14]; for drop tests, example of tests are solidification of either sessile liquid drops [7,23], 

flowing liquid water [8], impacting water drops [13,14,17], or drop exposed to shear flow [21]. Since ice 

nucleation and accretion is generally affected by a variety of factors [23], such as solid surface temperature 

and morphology, ambient conditions (temperature, humidity), outcome of tests can be dramatically affected, 

and so the evaluation of surface ability to contrast icing. 

In our previous study [19], we presented results from icing wind tunnel tests, where it was shown that 

the heat load of a thermal anti-icing system could be reduced up to 80% thanks to the application of a 

superhydrophobic coating, compared to a reference aluminum surface. In the present paper, we focus on the 

fundamental physics od drop impact in icing conditions: the aim is to understand the effect of surface 

wettability, and the effect of environmental conditions (e.g. air humidity) for water drop impact onto surfaces 

cooled to sub-freezing temperatures, to clarify the potential of superhydrophobic coatings as an icing 

mitigation strategy. 

 

 
Fig. 2: Schematic of ice accretion on a wing: a) hydrophilic wing; b) superhydrophobic wing. Inset 

pictures wings top view, showing runback ice accretion on a hydrophilic wing and an ice-free 

superhydrophobic wing in the same environmental conditions (see text and [19] for details). 
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2. METHODS AND MATERIALS 
 

Drop impact tests were performed in a specifically designed test rig, where ambient humidity was 

controlled by injection of dry compressed air at room temperature, and thus control the formation of 

condensate or frost on the cold surface during tests. The minimum dew temperature that could be reached in 

the test section was -20°C (corresponding to a relative humidity 4%   at 25°C; absolute humidity of 

~0.9g/m
3
). The drop was generated at the needle tip, from a reservoir at a constant temperature of 0°C 

(water-ice mixture). The temperature of the target surface, where drops impact, was controlled using a 

specifically designed cooling system, consisting of two Peltier cells and a liquid cooling heat exchanger. 

Surface temperature was monitored using two K-type thermocouples. The surface temperature was 

homogeneous, within ±1°C. The drop impact was recorded from side by a high-speed camera (PCO camera 

1200h). 

Drop impact tests were repeated on six different samples, characterized by different wetting and thermal 

properties: glass, PMMA, Teflon and SHS-Teflon, copper and bare aluminum. Glass samples were ordinary 

microscope slides. For PMMA, Teflon and SHS-Teflon surfaces, aluminum served as substrate on which 

various coatings were applied. Details on surface preparation can be found in the Supplementary Material. 

Table 2 reports measurements of surface wettability (advancing, θA, and receding, θR, contact angles, and 

contact angle hysteresis, Δθ, obtained by means of sessile drop method), surface roughness and sample 

thermal effusivity, pkc  , where ρ is density, k thermal conductivity and cp specific heat capacity. 

Under the hypothesis of perfect contact between interfaces and a semi-infinite solid medium, surface thermal 

effusivity is used to estimate the contact temperature, TC, i.e. the temperature at the interface between drop 

and sample upon impact, as: 

 D D S S
C

D S

T T
T

 

 





 (1)  

where subscript D and S refer to drop and sample, respectively. 

 

Drop diameter, 0D , was kept constant at 2.80±0.05mm. The needle was placed at three different 

heights, to obtain three different impact speeds, V , equal to 0.7, 1.3 and 3.4 m/s, which correspond to Weber 

numbers, We , of 40, 130 and 450, respectively (
2

0We V D  , where   and   are water density and 

surface tension, respectively). These values were chosen because they correspond to moderate, intermediate 

and high We  impact regimes, according to our previous study [28]. Surface temperature was decreased by 

5°C steps from 5 to -30°C. Drop impact could be performed down to -20°C without frost accretion on the 

surface. Impacting drop temperature was at 0°C. 

 

 

Table 2: Characteristics of surfaces used for drop impact tests: advancing, A , and receding, R , 

contact angles, contact angle hysteresis, A R     , surface mean roughness, aR , rms roughness, qR , 

and material effusivity. Standard deviation for contact angles is ±2°. 

Surface A  [°] R  [°]   [°] aR  [μm] qR  [μm]   [m
2
/s] 

Glass 46 <5 ~40 0.04±0.01 0.05±0.01 1516 

PMMA 88 39 49 0.50±0.10 0.75±0.15 - 

Teflon 123 100 23 0.17±0.04 0.22±0.07 - 

SHS-Teflon 162 154 8 2.70±0.5 3.40±0.5 - 

Copper 92 48 44 0.05±0.02 0.07±0.02 37063 

Aluminum 79 <10 ~70 0.05±0.02 0.07±0.02 20507 
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3. RESULTS AND DISCUSSION 
 

Fig. 3 illustrates image sequence of water drop impacting on PMMA, as representative for hydrophilic 

surfaces, in different conditions: unfrosted surface at temperature of -10°C, -15°C, and frosted surface at -

20°C. Drop impact speed is 3.4 m/s (corresponding to We=450). Image sequences in Fig. 3a and b 

(corresponding to the unfrosted surface) show that surface temperature has no effect on drop impact 

dynamics, neither during spreading nor during recoiling phase.  The maximum diameter and spreading is the 

same for both cases, and also recoiling occurs. No solidification can be observed in the image sequence, not 

even close to the drop-surface contact area. The impact dynamics changes when frost is present on the 

sample surfaces (e.g. due to increased ambient humidity, so that surface temperature is lower than dew 

point). Although no differences can be observed during the spreading phase, once the drop has reached its 

maximum contact diameter, a pinning of the contact line occurred, drop diameter remained constant and no 

drop recoil was observed. Even if small layer of frost was present on the surface, barely visible by naked ice, 

the effect on drop evolution was dramatic, causing a pinning of the contact line.  

An important phenomenon that was observed is supercooling. When no frost was present on the surface, 

it took few seconds before solidification occurs, likely due to supercooling, i.e. the water was cooled down 

below the freezing point. Solidification of the liquid drop, sitting on the surface after impact, was easily 

activated by a small perturbation, e.g., by touching the drop: this indicates that the drop was in a metastable 

system and started freezing once the system was perturbed. After a first stage of solidification, when ice 

nucleation takes place (the liquid drops become milky, due to presence of a water-ice mixture), with a 

duration in the order of 10-100 ms (similar to the case of levitating drops not in contact with a surface [27]), 

a second stage can be observed, where the solidification front propagates from the drop-surface contact area 

to the drop front. This second phase is several orders of magnitude slower than the first phase, being in the 

order of 10 s [27], and is mainly controlled by heat transfer conduction in the substrate [29]. 

The other tested smooth hydrophilic and hydrophobic surfaces, such as glass, Teflon, copper and 

aluminum, were tested.  High-speed videos (which are not reported here for brevity) confirm that freezing 

characteristic times are higher than drop dynamics characteristic times and, if no frost is present on the 

surface, the drop impact outcome is not modified by surface temperature. 

 

 10ST C    (unfrosted) 15ST C    (unfrosted) 20ST C    (frosted) 

before impact    

0.7 mst      

2.1mst      

10.8 mst      

24.1mst      

47.3 mst      

68.9 mst      

 a b d 

Fig. 3: Water drop impacting on PMMA at different surface temperatures, ST . The surface is unfrosted 

for 10ST C    and 15 C  , whereas frost accretes on the surface at 20ST C   . Drop impact conditions 

are: 0 2.8 mmD  , 3.4 m/sV   ( 340We  ); drop temperature before impact is 0DT C  . 

 

Fig. 4 illustrates the image sequence of drop impacting on SHS-Teflon in two different conditions for a 

drop impacting at 3.4 m/s:  (a) unfrosted surface at -10°C, and (c) frosted surface at -12°C. As observed for 

impacts on PMMA, drop dynamics is not affected by surface temperature, if no frost is present on the 

surface. When surface temperature is at -10°C and no frost is present on the surface (see Fig. 4a), the drop 

spreads and recoil as in room temperature conditions. No solidification occurs, not even at the drop-surface 
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interface, and the drop rebounds from the surface after few ms, with rebound given by  
0.5

3

0 8Rt D   

[33]. We can thus deduce that surface temperature has no effect on drop dynamics for the analyzed 

superhydrophobic surface and, most importantly, does not affect rebound. Even in the case of higher speed 

impact, as represented in Figure 4, when secondary drops may be formed due to drop fragmentation or 

break-up during the initial moments of recoil phase [34], it can be observed that secondary drops maintain a 

high mobility on the surface, and easy roll away or even rebound. When the video is stopped (~100ms after 

impact), such small drops have not frozen yet.  

Differently, when SHS-Teflon surface is frosted a considerable effect on drop impact outcome (see Fig. 

4b) is visible: after reaching its maximum spreading, recoil phase starts. However, while drop is recoiling (t 

~ 8 ms), drop contact line remains pinned and only partial rebound occurs, since a consistent part of the drop 

remains attached to the surface.  

 10ST C    (unfrosted) 12ST C    (frosted) 

before impact 

  

1.0 mst   

  

3.3 mst   

  

8.3 mst   

  

17.6 mst   

  

 a b 

Fig. 4: Water drop impacting on SHS-Teflon at different surface temperatures, ST . The surface is 

unfrosted for case a ( 10ST C   ) and frosted for case b ( 12ST C   ). Drop impact conditions are: 

0 2.8mmD  , 3.4 m/sV   ( 340We  ); drop temperature before impact is 0DT C  . 

 

This means that even on superhydrophobic surfaces the presence of frost affects drop dynamics. 

However, a difference between hydrophilic surface (PMMA) and SHS-Teflon was found. When frost is 

present on the surface, drop on PMMA reaches its maximum spreading and does not recoil, i.e. drop contact 

diameter remains at its maximum value. On a SHS surface, recoil is not completely inhibited; nonetheless, 

recoil is not complete and drop only partially rebounds from the surface. There might be different reasons for 

such behavior. In the case of SHS-surfaces, heat transfer between surface and drop is likely reduced by air 

pockets, which act as insulating layer and retard the solidification of the liquid layer at the drop-surface 

interface. Second, frost formation on surfaces with different wettability may have a different structure: 

isolated frost structures, with a snowflake-like shape, were observed on the SHS, whereas on PMMA and in 

general on hydrophilic surfaces frost was more homogeneous and compact. It is possible that different shape 

and eventually distribution of nucleation sites may affect drop solidification and thus drop dynamics. 

 

4. CONCLUSIONS 
To conclude, in the present paper we addressed an alternative coating strategy to combat ice accretion, 

called “icing mitigation”. Instead of focusing on icephobicity, we show how to make use of 

superhydrophobicity to allow liquid water removal before impact water drops can freeze on a solid surface. 

Indeed, drop impact experiments showed that drop spreading and recoiling are not affected by solidification 
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effects even when surface temperature is below 0°C (tested down to -20°C), if frost is not present on the 

surface, irrespective of surface effusivity and wettability. For a superhydrophobic surface, this means that 

rebound will still occur in a no-frost condition. From an application perspective, we can conclude that a 

superhydrophobic surface can be effective when used in combination with a heating system, that keeps the 

surface at a temperature above the dew point or, even better, above 0°C, to avoid presence of ice crystal, 

which may act as nucleation sites. As such, application of superhydrophobic surfaces can allow a substantial 

reduction of energy requirements of present thermo-based anti-icing systems: instead of evaporating 

impacting water drops, drop removal is promoted after impact thanks to water-repellant surfaces. 
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