10 research outputs found

    Human Olfactory Bulb Neural Stem Cells (Hu-OBNSCs) Can Be Loaded with Paclitaxel and Used to Inhibit Glioblastoma Cell Growth

    Get PDF
    Exploitation of the potential ability of human olfactory bulb (hOB) cells to carry, release, and deliver an effective, targeted anticancer therapy within the central nervous system (CNS) milieu remains elusive. Previous studies have demonstrated the marked ability of several types of stem cells (such as mesenchymal stem cells (MSCs) to carry and release different anti-cancer agents such as paclitaxel (PTX). Herein we investigate the ability of human olfactory bulb neural stem cells (Hu-OBNSCs) to carry and release paclitaxel, producing effective cytotoxic effects against cancer cells. We isolated Hu-OBNSCs from the hOB, uploaded them with PTX, and studied their potential cytotoxic effects against cancer cells in vitro. Interestingly, the Hu-OBNSCs displayed a five-fold increase in their resistance to the cytotoxicity of PTX, and the PTX-uploaded Hu-OBNSCs were able to inhibit proliferation and invasion, and to trigger marked cytotoxic effects on glioblastoma multiforme (GBM) cancer cells, and Human Caucasian fetal pancreatic adenocarcinoma 1 (CFPAC-1) in vitro. Despite their ability to resist the cytotoxic activity of PTX, the mechanism by which Hu-OBNSCs acquire resistance to PTX is not yet explained. Collectively our data indicate the ability of the Hu-OBNSCs to resist PTX, and to trigger effective cytotoxic effects against GBM cancer cells and CFPAC-1. This indicates their potential to be used as a carrier/vehicle for targeted anti-cancer therapy within the CNS

    Identification and mapping of brain natriuretic peptide in the normal ventricular myocardium of a desert-dwelling mammalian model, the camel (Camelus dromedarius): Immunohistochemical and ultrastructural study

    No full text
    Brain natriuretic peptide (BNP) is mainly produced in the ventricular myocardium, where it is released into the circulation, producing rapid volume decrease by diuresis, natriuresis, and water shift into the extracellular space, and vasodilation. The dromedary camel, a mammalian model of the desert nomads, lives under unfavorable physiological stresses during thirst, starvation, desiccation, and hot climate, thus has a special demand for water homeostasis. The present studies characterized BNP in the ventricular myocardium of healthy camels, immunohistochemically with a specific antibody, and ultrastructurally identified the endocrine property of the cardiomyocytes and Purkinje fibers. The paranuclear, granular, immunoreactive material was not restricted to the cardiomyocytes, as it was also visible in the Purkinje fibers and their associated nerve varicosities. The intensity of immunoreactive BNP showed a transmural gradient from the subepicardium to the myocardium. Intense immunoreactivity was also noted among the perivascular cardiomyocytes. At the electron microscopic level, specific granules were demonstrated in the paranuclear cytosol of cardiomyocytes and Purkinje fibers. The current study provides the first immunohistochemical localization pattern of BNP in the camel myocardium and suggests a relationship between the intense subepicardial BNP-immunoexpression and a possible translocation of the active hormone to the pericardial fluid for further paracrine actions on the heart and its coronaries.Scopu

    The therapeutic effects of tumor treating fields on cancer and noncancerous cells

    No full text
    Tumor treating fields (TTFields) are among clinically active anticancer modalities that utilize low?intensity, intermediate frequency (IF), and alternating electric fields (AEFs) to selectively disrupt mitosis in cancerous cells. Application of TTFields in the range of 100?900 kHz in cancer therapy and its effect on normal and cancer cells have attracted a great deal of interest in recent years. TTFields affect solid tumors by introducing increased chromatid aberrations that reduce the capacity to repair DNA damage and chromosome segregation, resulting in autophagy and subsequent cell death. In this review, we present an overview of the applications of TTFields in the treatment of cancer. We discuss several practical applications of TTField frequencies combined with metallic nanoparticles (NPs) (magnetic or nonmagnetic NPs) for internalization into cancer cells. In addition, TTFields can be combined effectively with chemotherapy and radiotherapy.Scopu

    Nanoparticles in tissue engineering: Applications, challenges and prospects

    Get PDF
    Tissue engineering (TE) is an interdisciplinary field integrating engineering, material science and medical biology that aims to develop biological substitutes to repair, replace, retain, or enhance tissue and organ-level functions. Current TE methods face obstacles including a lack of appropriate biomaterials, ineffective cell growth and a lack of techniques for capturing appropriate physiological architectures as well as unstable and insufficient production of growth factors to stimulate cell communication and proper response. In addition, the inability to control cellular functions and their various properties (biological, mechanical, electrochemical and others) and issues of biomolecular detection and biosensors, all add to the current limitations in this field. Nanoparticles are at the forefront of nanotechnology and their distinctive size-dependent properties have shown promise in overcoming many of the obstacles faced by TE today. Despite tremendous progress in the use of nanoparticles over the last 2 decades, the full potential of the applications of nanoparticles in solving TE problems has yet to be realized. This review presents an overview of the diverse applications of various types of nanoparticles in TE applications and challenges that need to be overcome for nanotechnology to reach its full potential.Scopu

    Current progress in chimeric antigen receptor T cell therapy for glioblastoma multiforme

    No full text
    Glioblastoma multiforme (GBM) is one of the deadliest brain tumors with an unfavorable prognosis and overall survival of approximately 20�months following diagnosis. The current treatment for GBM includes surgical resections and chemo- and radiotherapeutic modalities, which are not effective. CAR-T immunotherapy has been proven effective for CD19-positive blood malignancies, and the application of CAR-T cell therapy for solid tumors including GBM offers great hope for this aggressive tumor which has a limited response to current treatments. CAR-T technology depends on the use of patient-specific T cells genetically engineered to express specific tumor-associated antigens (TAAs). Interaction of CAR-T cells with tumor cells triggers the destruction/elimination of these cells by the induction of cytotoxicity and the release of different cytokines. Despite the great promise of CAR-T cell-based therapy several challenges exist. These include the heterogeneity of GBM cancer cells, aberrant various signaling pathways involved in tumor progression, antigen escape, the hostile inhibitory GBM microenvironment, T cell dysfunction, blood-brain barrier, and defective antigen presentation. All need to be addressed before full application at the clinical level can begin. Herein we provide a focused review of the rationale for the use of different types of CAR-T cells (including Fc?Rs), the different GBM-associated antigens, the challenges still facing CAR-T-based therapy, and means to overcome such challenges. Finally, we enumerate currently completed and ongoing clinical trials, highlighting the different ways such trials are designed to overcome specific problems. Exploitation of the full potential of CAR-T cell therapy for GBM depends on their solution.Scopu

    Generation of gene edited hiPSC from familial Alzheimer's disease patient carrying N141I missense mutation in presenilin 2

    No full text
    Alzheimer's disease (AD) is the major cause of dementia worldwide. Early-onset familial AD accounts for about 0.5% of all AD and is caused by single major gene mutations and autosomal dominant inheritance. An N141I missense mutation is associated with a significant increase in basal cell death and apoptosis. In this work we generated hiPSC from skin fibroblasts obtained from an AD patient carrying a N141I missense mutation in PSEN2. The generated iPSC colonies grew and were characterized by pluripotency marker staining; the N141I missense mutation was corrected using genome editing technology.Scopu

    p53 signaling in cancer progression and therapy

    No full text
    The p53 protein is a transcription factor known as the "guardian of the genome" because of its critical function in preserving genomic integrity. The TP53 gene is mutated in approximately half of all human malignancies, including those of the breast, colon, lung, liver, prostate, bladder, and skin. When DNA damage occurs, the TP53 gene on human chromosome 17 stops the cell cycle. If p53 protein is mutated, the cell cycle is unrestricted and the damaged DNA is replicated, resulting in uncontrolled cell proliferation and cancer tumours. Tumor-associated p53 mutations are usually associated with phenotypes distinct from those caused by the loss of the tumor-suppressing function exerted by wild-type p53protein. Many of these mutant p53 proteins have oncogenic characteristics, and therefore modulate the ability of cancer cells to proliferate, escape apoptosis, invade and metastasize. Because p53 deficiency is so common in human cancer, this protein is an excellent option for cancer treatment. In this review, we will discuss some of the molecular pathways by which mutant p53 proteins might perform their oncogenic activities, as well as prospective treatment methods based on restoring tumor suppressive p53 functionsScopu

    Development of nitric oxide releasing visible light crosslinked gelatin methacrylate hydrogel for rapid closure of diabetic wounds

    No full text
    Management of non-healing and slow to heal diabetic wounds is a major concern in healthcare across the world. Numerous techniques have been investigated to solve the issue of delayed wound healing, though, mostly unable to promote complete healing of diabetic wounds due to the lack of proper cell proliferation, poor cell-cell communication, and higher chances of wound infections. These challenges can be minimized by using hydrogel based wound healing patches loaded with bioactive agents. Gelatin methacrylate (GelMA) has been proven to be a highly cell friendly, cell adhesive, and inexpensive biopolymer for various tissue engineering and wound healing applications. In this study, S-Nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor, was incorporated in a highly porous GelMA hydrogel patch to improve cell proliferation, facilitate rapid cell migration, and enhance diabetic wound healing. We adopted a visible light crosslinking method to fabricate this highly porous biodegradable but relatively stable patch. Developed patches were characterized for morphology, NO release, cell proliferation and migration, and diabetic wound healing in a rat model. The obtained results indicate that SNAP loaded visible light crosslinked GelMA hydrogel patches can be highly effective in promoting diabetic wound healing.Scopu

    Exome sequencing of glioblastoma-derived cancer stem cells reveals rare clinically relevant frameshift deletion in MLLT1 gene

    No full text
    Background: Glioblastoma multiforme (GBM) is a heterogeneous CNS neoplasm which causes significant morbidity and mortality. One reason for the poor prognostic outcome of GBM is attributed to the presence of cancer stem cells (CSC) which confer resistance against standard chemo- and radiotherapeutics modalities. Two types of GBM-associated CSC were isolated from the same patient: tumor core- (c-CSC) and peritumor tissue-derived cancer stem cells (p-CSC). Our experiments are focused on glioblastoma?IDH-wild type, and no disease-defining alterations were present in histone, BRAF or other genes. Methods: In the present study, potential differences in genetic variants between c-CSC versus p-CSC derived from four GBM patients were investigated with the aims of (1) comparing the exome sequences between all the c-CSC or p-CSC to identify the common variants; (2) identifying the variants affecting the function of genes known to be involved in cancer origin and development. Results: By comparative analyses, we identified common gene single nucleotide variants (SNV) in all GBM c-CSC and p-CSC, a potentially deleterious variant was a frameshift deletion at Gln461fs in the MLLT1 gene, that was encountered only in p-CSC samples with different allelic frequency. Conclusions: We discovered a potentially harmful frameshift deletion at Gln461fs in the MLLT1 gene. Further investigation is required to confirm the presence of the identified mutations in patient tissue samples, as well as the significance of the frameshift mutation in the MLLT1 gene on GBM biology and response to therapy based on genomic functional experiments.Scopu

    Erratum: Antimicrobials: A global alliance for optimizing their rational use in intra-abdominal infections (AGORA). [World J Emerg Surg. 11, (2016) (33)] DOI: 10.1186/s13017-016-0089-y

    No full text
    The original article [1] contains an error whereby a co-author, Boris Sakakushev has their family name spelt incorrectly as 'Sakakhushev'. The authors would therefore like it known that the correct spelling of the family name is 'Sakakushev'. © The Author(s)
    corecore