335 research outputs found

    Endosome to Golgi Retrieval of the Vacuolar Protein Sorting Receptor, Vps10p, Requires the Function of the VPS29, VPS30, and VPS35 Gene Products

    Get PDF
    Mutations in the S. cerevisiae VPS29 and VPS30 genes lead to a selective protein sorting defect in which the vacuolar protein carboxypeptidase Y (CPY) is missorted and secreted from the cell, while other soluble vacuolar hydrolases like proteinase A (PrA) are delivered to the vacuole. This phenotype is similar to that seen in cells with mutations in the previously characterized VPS10 and VPS35 genes. Vps10p is a late Golgi transmembrane protein that acts as the sorting receptor for soluble vacuolar hydrolases like CPY and PrA, while Vps35p is a peripheral membrane protein which cofractionates with membranes enriched in Vps10p. The sequences of the VPS29, VPS30, and VPS35 genes do not yet give any clues to the functions of their products. Each is predicted to encode a hydrophilic protein with homologues in the human and C. elegans genomes. Interestingly, mutations in the VPS29, VPS30, or VPS35 genes change the subcellular distribution of the Vps10 protein, resulting in a shift of Vps10p from the Golgi to the vacuolar membrane. The route that Vps10p takes to reach the vacuole in a vps35 mutant does not depend upon Sec1p mediated arrival at the plasma membrane but does require the activity of the pre-vacuolar endosomal t-SNARE, Pep12p. A temperature conditional allele of the VPS35 gene was generated and has been found to cause missorting/secretion of CPY and also Vps10p to mislocalize to a vacuolar membrane fraction at the nonpermissive temperature. Vps35p continues to cofractionate with Vps10p in vps29 mutants, suggesting that Vps10p and Vps35p may directly interact. Together, the data indicate that the VPS29, VPS30, and VPS35 gene products are required for the normal recycling of Vps10p from the prevacuolar endosome back to the Golgi where it can initiate additional rounds of vacuolar hydrolase sorting

    Emergence of qualia from brain activity or from an interaction of proto-consciousness with the brain: which one is the weirder? Available evidence and a research agenda

    Get PDF
    This contribution to the science of consciousness aims at comparing how two different theories can explain the emergence of different qualia experiences, meta-awareness, meta-cognition, the placebo effect, out-of-body experiences, cognitive therapy and meditation-induced brain changes, etc. The first theory postulates that qualia experiences derive from specific neural patterns, the second one, that qualia experiences derive from the interaction of a proto-consciousness with the brain\u2019s neural activity. From this comparison it will be possible to judge which one seems to better explain the different qualia experiences and to offer a more promising research agenda

    Computing Components of Everyday Stress Responses: Exploring Conceptual Challenges and New Opportunities

    Get PDF
    Repeated assessments in everyday life enables collecting ecologically valid data on dynamic, within-persons processes. These methods have widespread utility and application and have been extensively used for the study of stressors and stress responses. Enhanced conceptual sophistication of characterizing intraindividual stress responses in everyday life would help advance the field. This article provides a pragmatic overview of approaches, opportunities, and challenges when intensive ambulatory methods are applied to study everyday stress responses in “real time.” We distinguish between three stress-response components (i.e., reactivity, recovery, and pileup) and focus on several fundamental questions: (a) What is the appropriate stress-free resting state (or “baseline”) for an individual in everyday life? (b) How does one index the magnitude of the initial response to a stressor (reactivity)? (c) Following a stressor, how can recovery be identified (e.g., when the stress response has completed)? and (d) Because stressors may not occur in isolation, how can one capture the temporal clustering of stressors and/or stress responses (pileup)? We also present initial ideas on applying this approach to intervention research. Although we focus on stress responses, these issues may inform many other dynamic intraindividual constructs and behaviors (e.g., physical activity, physiological processes, other subjective states) captured in ambulatory assessment

    Selection of Resistant Bacteria at Very Low Antibiotic Concentrations

    Get PDF
    The widespread use of antibiotics is selecting for a variety of resistance mechanisms that seriously challenge our ability to treat bacterial infections. Resistant bacteria can be selected at the high concentrations of antibiotics used therapeutically, but what role the much lower antibiotic concentrations present in many environments plays in selection remains largely unclear. Here we show using highly sensitive competition experiments that selection of resistant bacteria occurs at extremely low antibiotic concentrations. Thus, for three clinically important antibiotics, drug concentrations up to several hundred-fold below the minimal inhibitory concentration of susceptible bacteria could enrich for resistant bacteria, even when present at a very low initial fraction. We also show that de novo mutants can be selected at sub-MIC concentrations of antibiotics, and we provide a mathematical model predicting how rapidly such mutants would take over in a susceptible population. These results add another dimension to the evolution of resistance and suggest that the low antibiotic concentrations found in many natural environments are important for enrichment and maintenance of resistance in bacterial populations

    Antisense oligonucleotide and thyroid hormone conjugates for obesity treatment

    Get PDF
    Using the principle of antibody-drug conjugates that deliver highly potent cytotoxic agents to cancer cells for cancer therapy, we here report the synthesis of antisense-oligonucleotides (ASO) and thyroid hormone T3 conjugates for obesity treatment. ASOs primarily target fat and liver with poor penetrance to other organs. Pharmacological T3 treatment increases energy expenditure and causes weight loss, but is contraindicated for obesity treatment due to systemic effects on multiple organs. We hypothesize that ASO-T3 conjugates may knock down target genes and enrich T3 action in fat and liver. Two established ASOs are tested. Nicotinamide N-methyltransferase (NNMT)-ASO prevents diet- induced obesity in mice. Apolipoprotein B (ApoB)-ASO is an FDA approved drug for treating familial hypercholesterolemia. NNMT-ASO and ApoB-ASO are chemically conjugated with T3 using a non- cleavable sulfo-SMCC linker. Both NNMT-ASO-T3 (NAT3) and ApoB-ASO-T3 (AAT3) enhance thyroid hormone receptor activity. Treating obese mice with NAT3 or AAT3 decreases adiposity and increases lean mass. ASO-T3 enhances white fat browning, decreases genes for fatty acid synthesis in liver, and shows limited effects on T3 target genes in heart and muscle. Furthermore, AAT3 augments LDL cholesterol-lowering effects of ApoB-ASO. Therefore, ASO and hormone/drug conjugation may provide a novel strategy for obesity and hyperlipidemia treatment

    The Fitness Cost of Antibiotic Resistance in Streptococcus pneumoniae: Insight from the Field

    Get PDF
    Laboratory studies have suggested that antibiotic resistance may result in decreased fitness in the bacteria that harbor it. Observational studies have supported this, but due to ethical and practical considerations, it is rare to have experimental control over antibiotic prescription rates.We analyze data from a 54-month longitudinal trial that monitored pneumococcal drug resistance during and after biannual mass distribution of azithromycin for the elimination of the blinding eye disease, trachoma. Prescription of azithromycin and antibiotics that can create cross-resistance to it is rare in this part of the world. As a result, we were able to follow trends in resistance with minimal influence from unmeasured antibiotic use. Using these data, we fit a probabilistic disease transmission model that included two resistant strains, corresponding to the two dominant modes of resistance to macrolide antibiotics. We estimated the relative fitness of these two strains to be 0.86 (95% CI 0.80 to 0.90), and 0.88 (95% CI 0.82 to 0.93), relative to antibiotic-sensitive strains. We then used these estimates to predict that, within 5 years of the last antibiotic treatment, there would be a 95% chance of elimination of macrolide resistance by intra-species competition alone.Although it is quite possible that the fitness cost of macrolide resistance is sufficient to ensure its eventual elimination in the absence of antibiotic selection, this process takes time, and prevention is likely the best policy in the fight against resistance

    Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several mutations were present in the genome of <it>Streptococcus pneumoniae </it>linezolid-resistant strains but the role of several of these mutations had not been experimentally tested. To analyze the role of these mutations, we reconstituted resistance by serial whole genome transformation of a novel resistant isolate into two strains with sensitive background. We sequenced the parent mutant and two independent transformants exhibiting similar minimum inhibitory concentration to linezolid.</p> <p>Results</p> <p>Comparative genomic analyses revealed that transformants acquired G2576T transversions in every gene copy of 23S rRNA and that the number of altered copies correlated with the level of linezolid resistance and cross-resistance to florfenicol and chloramphenicol. One of the transformants also acquired a mutation present in the parent mutant leading to the overexpression of an ABC transporter (spr1021). The acquisition of these mutations conferred a fitness cost however, which was further enhanced by the acquisition of a mutation in a RNA methyltransferase implicated in resistance. Interestingly, the fitness of the transformants could be restored in part by the acquisition of altered copies of the L3 and L16 ribosomal proteins and by mutations leading to the overexpression of the spr1887 ABC transporter that were present in the original linezolid-resistant mutant.</p> <p>Conclusions</p> <p>Our results demonstrate the usefulness of whole genome approaches at detecting major determinants of resistance as well as compensatory mutations that alleviate the fitness cost associated with resistance.</p

    Compensatory Evolution of pbp Mutations Restores the Fitness Cost Imposed by β-Lactam Resistance in Streptococcus pneumoniae

    Get PDF
    The prevalence of antibiotic resistance genes in pathogenic bacteria is a major challenge to treating many infectious diseases. The spread of these genes is driven by the strong selection imposed by the use of antibacterial drugs. However, in the absence of drug selection, antibiotic resistance genes impose a fitness cost, which can be ameliorated by compensatory mutations. In Streptococcus pneumoniae, β-lactam resistance is caused by mutations in three penicillin-binding proteins, PBP1a, PBP2x, and PBP2b, all of which are implicated in cell wall synthesis and the cell division cycle. We found that the fitness cost and cell division defects conferred by pbp2b mutations (as determined by fitness competitive assays in vitro and in vivo and fluorescence microscopy) were fully compensated by the acquisition of pbp2x and pbp1a mutations, apparently by means of an increased stability and a consequent mislocalization of these protein mutants. Thus, these compensatory combinations of pbp mutant alleles resulted in an increase in the level and spectrum of β-lactam resistance. This report describes a direct correlation between antibiotic resistance increase and fitness cost compensation, both caused by the same gene mutations acquired by horizontal transfer. The clinical origin of the pbp mutations suggests that this intergenic compensatory process is involved in the persistence of β-lactam resistance among circulating strains. We propose that this compensatory mechanism is relevant for β-lactam resistance evolution in Streptococcus pneumoniae

    Psychological impact of visible differences in patients with congenital craniofacial anomalies

    Get PDF
    © 2015, Singh and Moss; licensee Springer. Background: Patients with craniofacial anomalies often have appearance concerns and related social anxiety which can affect their quality of life. This study assessed the psychological impact of facial and dental appearance in patients with craniofacial anomalies in comparison to a general population control group. Methods: The study involved 102 adult patients (51% male) with congenital craniofacial anomalies and 102 controls (49% male). Both groups completed the Nepali version of Derriford Appearance Scale (DAS) and the Psychological Impact of Dental Aesthetic Questionnaire (PIDAQ) in a clinical setting to assess appearance-related distress, avoidance, and anxiety. Results: There was a significant difference between patients and controls on both PIDAQ (mean score for patients 33.25 ± 9.45 while for controls 27.52 ± 5.67, p < 0.001) and DAS59 scores (mean score for patients 159.16 ± 31.54 while for controls 77.64 ± 6.57, p < 0.001), indicating that patients experienced greater negative psychological impact of living with their appearance (PIDAQ) and more appearance-related distress (DAS) than controls. DAS scores were not associated with gender. There was no association of the place of residence (rural vs. urban) with PIDAQ or DAS59 scores. Conclusions: There is a significant psychological impact of altered facial and dental appearance in patients with craniofacial anomalies compared to controls. There was no effect of locality (rural/urban) on the psychological impact of facial and dental appearance in patients
    corecore