143 research outputs found

    Cognitive control modulates preferential sensory processing of affective stimuli

    Get PDF
    Adaptive human behavior crucially relies on the ability of the brain to allocate resources automatically to emotionally significant stimuli. This ability has consistently been demonstrated by studies showing preferential processing of affective stimuli in sensory cortical areas. It is still unclear, however, whether this putatively automatic mechanism can be modulated by cognitive control processes. Here, we use functional magnetic resonance imaging (fMRI) to investigate whether preferential processing of an affective face distractor is suppressed when an affective distractor has previously elicited a response conflict in a word-face Stroop task. We analyzed this for three consecutive stages in the ventral stream of visual processing for which preferential processing of affective stimuli has previously been demonstrated: the striate area (BA 17), category-unspecific extrastriate areas (BA 18/19), and the fusiform face area (FFA). We found that response conflict led to a selective suppression of affective face processing in category-unspecific extrastriate areas and the FFA, and this effect was accompanied by changes in functional connectivity between these areas and the rostral anterior cingulate cortex. In contrast, preferential processing of affective face distractors was unaffected in the striate area. Our results indicate that cognitive control processes adaptively suppress preferential processing of affective stimuli under conditions where affective processing is detrimental because it elicits response conflict

    Improving mentalizing deficits in older age with region-specific transcranial direct current stimulation.

    Get PDF
    Older adults have difficulties to detect the intentions, thoughts, and feelings of others, indicating an age-associated decline of socio-cognitive abilities that are known as "mentalizing". These deficits in mental state recognition are driven by neurofunctional alterations in brain regions that are implicated in mentalizing, such as the right temporo-parietal junction (rTPJ) and the dorso-medial prefrontal cortex (dmPFC). We tested whether focal transcranial current stimulation (tDCS) of the rTPJ and dmPFC has the potential to eliminate mentalizing deficits in older adults. Mentalizing deficits were assessed with a novel mindreading task that required the recognition of mental states in child faces. Older adults (n = 60) performed worse than younger adults (n = 30) on the mindreading task, indicating age-dependent deficits in mental state recognition. These mentalizing deficits were ameliorated in older adults who received sham-controlled andodal tDCS over the rTPJ (n = 30) but remained unchanged in older adults who received sham-controlled andodal tDCS over the dmPFC (n = 30). We, thus, showed for the first time that anodal tDCS over the rTPJ has the potential to remediate age-dependent mentalizing deficits in a region-specific way. This provides a rationale for exploring stimulation-based interventions targeting mentalizing deficits in older age. [Abstract copyright: © 2024. The Author(s).

    Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes

    Get PDF
    The rising proportion of elderly people worldwide will yield an increased incidence of age-associated cognitive impairments, imposing major burdens on societies. Consequently, growing interest emerged to evaluate new strategies to delay or counteract cognitive decline in aging. Here, we assessed immediate effects of anodal transcranial direct current stimulation (atDCS) on cognition and previously described detrimental changes in brain activity attributable to aging. Twenty healthy elderly adults were assessed in a crossover shamcontrolled design using functional magnetic resonance imaging (fMRI) and concurrent transcranial DCS administered to the left inferior frontal gyrus. Effects on performance and task-related brain activity were evaluated during overt semantic word generation, a task that is negatively affected by advanced age. Task-absent resting-state fMRI (RS-fMRI) assessed atDCS-induced changes at the network level independent of performance. Twenty matched younger adults served as controls. During sham stimulation, task-related fMRI demonstrated that enhanced bilateral prefrontal activity in older adults was associated with reduced performance. RS-fMRI revealed enhanced anterior and reduced posterior functional brain connectivity. atDCS significantly improved performance in older adults up to the level of younger controls; significantly reduced task-related hyperactivity in bilateral prefrontal cortices, the anterior cingulate gyrus, and the precuneus; and induced a more "youth-like" connectivity pattern during RS-fMRI. Our results provide converging evidence from behavioral analysis and two independent functional imaging paradigms that a single session of atDCS can temporarily reverse nonbeneficial effects of aging on cognition and brain activity and connectivity. These findings may translate into novel treatments to ameliorate cognitive decline in normal aging in the future

    The representation of the verb's argument structure as disclosed by fMRI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the composition of an event the verb's argument structure defines the number of participants and their relationships. Previous studies indicated distinct brain responses depending on how many obligatory arguments a verb takes. The present functional magnetic resonance imaging (fMRI) study served to verify the neural structures involved in the processing of German verbs with one (e.g. "snore") or three (e.g. "gives") argument structure. Within a silent reading design, verbs were presented either in isolation or with a minimal syntactic context ("snore" vs. "Peter snores").</p> <p>Results</p> <p>Reading of isolated one-argument verbs ("snore") produced stronger BOLD responses than three-argument verbs ("gives") in the inferior temporal fusiform gyrus (BA 37) of the left hemisphere, validating previous magnetoencephalographic findings. When presented in context one-argument verbs ("Peter snores") induced more pronounced activity in the inferior frontal gyrus (IFG) of the left hemisphere than three-argument verbs ("Peter gives").</p> <p>Conclusion</p> <p>In line with previous studies our results corroborate the left temporal lobe as site of representation and the IFG as site of processing of verbs' argument structure.</p

    Differential effects of dual and unihemispheric motor cortex stimulation in older adults

    Get PDF
    Bihemispheric transcranial direct current stimulation (tDCS) is thought to upregulate excitability of the primary motor cortex (M1) using anodal stimulation while concurrently downregulating contralateral M1 using cathodal stimulation. This “dual” tDCS method enhances motor learning in healthy subjects and facilitates motor recovery after stroke. However, its impact on motor system activity and connectivity remains unknown. Therefore, we assessed neural correlates of dual and unihemispheric anodal tDCS effects in 20 healthy older subjects in a randomized, sham-controlled study using a cross-over design. Participants underwent tDCS and simultaneous functional magnetic resonance imaging during a choice reaction time task and at rest. Diffusion tensor imaging (DTI) allowed us to relate potential functional changes to structural parameters. The resting-state analysis demonstrated that, compared with sham, both dual and anodal tDCS decreased connectivity of right hippocampus and M1 (contralateral to the anode position) while increasing connectivity in the left prefrontal cortex. Notably, dual but not anodal tDCS enhanced connectivity of the left dorsal posterior cingulate cortex. Furthermore, dual tDCS yielded stronger activations in bilateral M1 compared with anodal tDCS when participants used either their left or right hand during the motor task. The corresponding tDCS-induced changes in laterality of activations were related to the microstructural status of transcallosal motor fibers. In conclusion, our results suggest that the impact of bihemispheric tDCS cannot be explained by mere add-on effects of anodal and concurrent cathodal stimulation, but rather by complex network modulations involving interhemispheric interactions and areas associated with motor control in the dorsal posterior cingulate cortex

    Intensive language training enhances brain plasticity in chronic aphasia

    Get PDF
    BACKGROUND: Focal clusters of slow wave activity in the delta frequency range (1–4 Hz), as measured by magnetencephalography (MEG), are usually located in the vicinity of structural damage in the brain. Such oscillations are usually considered pathological and indicative of areas incapable of normal functioning owing to deafferentation from relevant input sources. In the present study we investigated the change in Delta Dipole Density in 28 patients with chronic aphasia (>12 months post onset) following cerebrovascular stroke of the left hemisphere before and after intensive speech and language therapy (3 hours/day over 2 weeks). RESULTS: Neuropsychologically assessed language functions improved significantly after training. Perilesional delta activity decreased after therapy in 16 of the 28 patients, while an increase was evident in 12 patients. The magnitude of change of delta activity in these areas correlated with the amount of change in language functions as measured by standardized language tests. CONCLUSIONS: These results emphasize the significance of perilesional areas in the rehabilitation of aphasia even years after the stroke, and might reflect reorganisation of the language network that provides the basis for improved language functions after intensive training

    Researchers’ perspectives on scientific and ethical issues with transcranial direct current stimulation: An international survey

    Get PDF
    In the last decade, an increasing number of studies have suggested that transcranial direct current stimulation (tDCS) may enhance brain function in healthy individuals, and ameliorate cognitive and other symptoms in patients suffering from various medical conditions. This, along with its presumed safety, simplicity, and affordability, has generated great enthusiasm amongst researchers, clinicians, patient populations, and the public (including a growing "do-it-yourself" community). However, discussion about the effectiveness and ethics of tDCS thus far has been confined to small groups of tDCS researchers and bioethicists. We conducted an international online survey targeting the opinions of researchers using tDCS who were asked to rate the technique's efficacy in different contexts. We also surveyed opinions about ethical concerns, self-enhancement and public availability. 265 complete responses were received and analyzed statistically and thematically. Our results emphasize the potential uses of tDCS in clinical and research contexts, but also highlight a number of emerging methodological and safety concerns, ethical challenges and the need for improved communication between researchers and bioethicists with regard to regulation of the device. Neither the media reputation of tDCS as a "miracle device" nor concerns expressed in recent neuroethical publications were entirely borne out in expert opinion

    Effects of transcranial direct current stimulation on neural networks in young and older adults

    Get PDF
    Transcranial direct current stimulation (tDCS) may be a viable tool to improve motor and cognitive function in advanced age. However, although a number of studies have demonstrated improved cognitive performance in older adults, other studies have failed to show restorative effects. The neural effects of beneficial stimulation response in both age groups is lacking. In the current study, tDCS was administered during simultaneous fMRI in 42 healthy young and older participants. Semantic word generation and motor speech baseline tasks were used to investigate behavioral and neural effects of uni-and bihemispheric motor cortex tDCS in a three-way, crossover, sham tDCS controlled design. Independent components analysis assessed differences in task-related activity between the two age groups and tDCS effects. at the network level. We also explored whether laterality of language network organization was effected by tDCS. Behaviorally, both active tDCS conditions significantly improved semantic word retrieval performance in young and older adults and were comparable between groups and stimulation conditions. Network-level tDCS effects were identified in the ventral and dorsal anterior cingulate networks in the combined sample during semantic fluency and motor speech tasks. In addition, a shift toward enhanced left laterality was identified in the older adults for both active stimulation conditions. Thus, tDCS results in common network-level modulations and behavioral improvements for both age groups, with an additional effect of increasing left laterality in older adults

    Stimulation of dorsolateral prefrontal cortex Enhances adaptive cognitive control: a high-definition transcranial direct current stimulation study

    Get PDF
    Conflict adaptation is a hallmark effect of adaptive cognitive control and refers to the adjustment of control to the level of previously experienced conflict. Conflict monitoring theory assumes that the dorsolateral prefrontal cortex (DLPFC) is causally involved in this adjustment. However,to date, evidence in humans is predominantly correlational, and heterogeneous with respecttothe lateralization of control in the DLPFC. We used high-definition transcranial direct current stimulation (HD-tDCS), which allows for more focal current delivery than conventional tDCS, to clarify the causal involvement of the DLPFC in conflict adaptation. Specifically, we investigated the regional specificity and lateralization of potential beneficial stimulation effects on conflict adaptation during a visual flanker task. One hundred twenty healthy participants were assigned to four HD-tDCS conditions: left or right DLPFC or left or right primary motor cortex (M1). Each group underwent both active and sham HD-tDCS in crossover, double-blind designs. We obtained a sizeable conflict adaptation effect (measured as the modulation of the flanker effect as a function of previous response conflict) in all groups and conditions. However,this effect was larger under active HD-tDCSthan under sham stimulation in both DLPFC groups. In contrast, active stimulation had no effect on conflict adaptation in the M1 groups. In sum, the present results indicate that the DLPFC plays a causal role in adaptive cognitive control, but that the involvement of DLPFC in control is not restricted to the left or right hemisphere. Moreover, our study confirms the potential of HD-tDCS to modulate cognition in a regionally specific manner

    Electrical Brain Stimulation Improves Cognitive Performance by Modulating Functional Connectivity and Task-Specific Activation

    Get PDF
    Excitatory anodal transcranial direct current stimulation (atDCS) can improve human cognitive functions, but neural underpinnings of its mode of action remain elusive. In a cross-over placebo ("sham") controlled study we used functional magnetic resonance imaging (fMRI) to investigate neurofunctional correlates of improved language functions induced by atDCS over a core language area, the left inferior frontal gyrus (IFG). Intrascanner transcranial direct current stimulation-induced changes in overt semantic word generation assessed behavioral modulation; task-related and task-independent (resting-state) fMRI characterized language network changes. Improved word-retrieval during atDCS was paralleled by selectively reduced task-related activation in the left ventral IFG, an area specifically implicated in semantic retrieval processes. Under atDCS, resting-state fMRI revealed increased connectivity of the left IFG and additional major hubs overlapping with the language network. In conclusion, atDCS modulates endogenous low-frequency oscillations in a distributed set of functionally connected brain areas, possibly inducing more efficient processing in critical task-relevant areas and improved behavioral performance
    • …
    corecore