1,348 research outputs found

    The ALICE EMCal L1 trigger first year of operation experience

    Full text link
    The ALICE experiment at the LHC is equipped with an electromagnetic calorimeter (EMCal) designed to enhance its capabilities for jet, photon and electron measurement. In addition, the EMCal enables triggering on jets and photons with a centrality dependent energy threshold. After its commissioning in 2010, the EMCal Level 1 (L1) trigger was officially approved for physics data taking in 2011. After describing the L1 hardware and trigger algorithms, the commissioning and the first year of running experience, both in proton and heavy ion beams, are reviewed. Additionally, the upgrades to the original L1 trigger design are detailed.Comment: Proceedings of TWEPP-12, Oxford. 10 pages, 9 figure

    Section 482: Reallocation of Personal Service Corporation Income to Shareholders

    Get PDF
    Whether income earned by an incorporated personal service business is taxable to the individual or to the corporation is often the subject of reallocation proceedings brought by the Internal Revenue Service. In this article the author discusses the theories underlying income reallocation and the applicable Internal Revenue Code sections, focusing on section 482. The author analyzes in detail the factors courts consider in permitting or denying reallocation and identifies the conflicts among the circuits in the interpretation and application of section 482

    Imp d&e feasibility study

    Get PDF
    Launching of Interplanetary Monitoring Platform spacecraft into lunar orbi

    Nonequilibrium static growing length scales in supercooled liquids on approaching the glass transition

    Full text link
    The small wavenumber kk behavior of the structure factor S(k)S(k) of overcompressed amorphous hard-sphere configurations was previously studied for a wide range of densities up to the maximally random jammed state, which can be viewed as a prototypical glassy state [A. Hopkins, F. H. Stillinger and S. Torquato, Phys. Rev. E, 86, 021505 (2012)]. It was found that a precursor to the glassy jammed state was evident long before the jamming density was reached as measured by a growing nonequilibrium length scale extracted from the volume integral of the direct correlation function c(r)c(r), which becomes long-ranged as the critical jammed state is reached. The present study extends that work by investigating via computer simulations two different atomic models: the single-component Z2 Dzugutov potential in three dimensions and the binary-mixture Kob-Andersen potential in two dimensions. Consistent with the aforementioned hard-sphere study, we demonstrate that for both models a signature of the glass transition is apparent well before the transition temperature is reached as measured by the length scale determined from from the volume integral of the direct correlation function in the single-component case and a generalized direct correlation function in the binary-mixture case. The latter quantity is obtained from a generalized Orstein-Zernike integral equation for a certain decoration of the atomic point configuration. We also show that these growing length scales, which are a consequence of the long-range nature of the direct correlation functions, are intrinsically nonequilibrium in nature as determined by an index XX that is a measure of deviation from thermal equilibrium. It is also demonstrated that this nonequilibrium index, which increases upon supercooling, is correlated with a characteristic relaxation time scale.Comment: 26 pages, 14 figure

    Level-1 jet trigger hardware for the ALICE electromagnetic calorimeter at LHC

    Full text link
    The ALICE experiment at the LHC is equipped with an electromagnetic calorimeter (EMCal) designed to enhance its capabilities for jet measurement. In addition, the EMCal enables triggering on high energy jets. Based on the previous development made for the Photon Spectrometer (PHOS) level-0 trigger, a specific electronic upgrade was designed in order to allow fast triggering on high energy jets (level-1). This development was made possible by using the latest generation of FPGAs which can deal with the instantaneous incoming data rate of 26 Gbit/s and process it in less than 4 {\mu}s.Comment: proceeding of TWEPP-10 at Aachen. 6 pages, 4 figure

    A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying all protein complexes in an organism is a major goal of systems biology. In the past 18 months, the results of two genome-scale tandem affinity purification-mass spectrometry (TAP-MS) assays in yeast have been published, along with corresponding complex maps. For most complexes, the published data sets were surprisingly uncorrelated. It is therefore useful to consider the raw data from each study and generate an accurate complex map from a high-confidence data set that integrates the results of these and earlier assays.</p> <p>Results</p> <p>Using an unsupervised probabilistic scoring scheme, we assigned a confidence score to each interaction in the matrix-model interpretation of the large-scale yeast mass-spectrometry data sets. The scoring metric proved more accurate than the filtering schemes used in the original data sets. We then took a high-confidence subset of these interactions and derived a set of complexes using MCL. The complexes show high correlation with existing annotations. Hierarchical organization of some protein complexes is evident from inter-complex interactions.</p> <p>Conclusion</p> <p>We demonstrate that our scoring method can generate an integrated high-confidence subset of observed matrix-model interactions, which we subsequently used to derive an accurate map of yeast complexes. Our results indicate that essentiality is a product of the protein complex rather than the individual protein, and that we have achieved near saturation of the yeast high-abundance, rich-media-expressed "complex-ome."</p

    Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis.

    Get PDF
    Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength

    How complete are current yeast and human protein-interaction networks?

    Get PDF
    We estimate the full yeast protein-protein interaction network to contain 37,800-75,500 interactions and the human network 154,000-369,000, but owing to a high false-positive rate, current maps are roughly only 50% and 10% complete, respectively. Paradoxically, releasing raw, unfiltered assay data might help separate true from false interactions

    Modulation of en-route charges to redistribute traffic in the European airspace

    Get PDF
    Peak-load pricing (PLP), a two-tariffs charging scheme commonly used in public transport and utilities, is tested on the European Air Traffic Management (ATM) system as a means for reducing capacity-demand imbalances. In particular, a centralised approach to PLP (CPLP) where a Central Planner (CP) sets en-route charges on the network is presented. CPLP consists of two phases: in the first, congested airspace sectors and their peak and off-peak hours are identified; in the second, CP assesses and sets en-route charges in order to reduce overall shift on the network. Such charges should guarantee that Air Navigation Service Providers (ANSPs) are able to recover their operational costs while inducing the Airspace Users (AUs) to route their flights in a way that respects airspace capacity. The interaction between CP and AUs is modelled as a Stackelberg game and formulated by means of bilevel linear programming. Two heuristic approaches, based on Coordinate-wise Descent and Genetic Algorithms are implemented to solve the CPLP model on a data set obtained from historical data for an entire day of traffic on European airspace. Results show that significant improvements in traffic distribution in terms of shift and sector load can be achieved through this simple en-route charges modulation scheme

    Dynamical mechanism of atrial fibrillation: a topological approach

    Get PDF
    While spiral wave breakup has been implicated in the emergence of atrial fibrillation, its role in maintaining this complex type of cardiac arrhythmia is less clear. We used the Karma model of cardiac excitation to investigate the dynamical mechanisms that sustain atrial fibrillation once it has been established. The results of our numerical study show that spatiotemporally chaotic dynamics in this regime can be described as a dynamical equilibrium between topologically distinct types of transitions that increase or decrease the number of wavelets, in general agreement with the multiple wavelets hypothesis. Surprisingly, we found that the process of continuous excitation waves breaking up into discontinuous pieces plays no role whatsoever in maintaining spatiotemporal complexity. Instead this complexity is maintained as a dynamical balance between wave coalescence -- a unique, previously unidentified, topological process that increases the number of wavelets -- and wave collapse -- a different topological process that decreases their number.Comment: 15 pages, 14 figure
    • …
    corecore