744 research outputs found

    Performance of Low-Volume Roads with Wearing Course Layer of Silty Sandy Soil Modified with Rice Husk Ash and Lime

    Full text link
    [EN] Rice husk ash (RHA) is a by-product of rice milling. Its use as soil stabilizer is a way to replace the final disposal with environmental benefit. However, RHA is not cementitious itself but when mixed with lime forms cements which improve the soil properties. A research of performance of a silty sandy soil modified with RHA and lime as wearing course layer of low-volume roads was conducted through two full-scale test sections with different pavements built in Artigas, northern Uruguay. The alkaline reactivity of RHA is low because the husk burning is not controlled. The soil-RHA-lime mix design was conducted according to the Thompson’s Method. The pavement test sections were monitored through deflection measures by Benkelman beam and observations of surface condition. The deflections decreased over time in both test sections due to the development of cementation of the study materials. After one year, the dust emission was reduced, the wet skid resistance of pavement surfaces improved and there was not rutting. The researched pavements have had a good performance under the existing traffic and environmental conditions, demonstrating that wearing course layer of silty sand modified with RHA and lime is an alternative to improve the condition of low-volume roads and to replace the final disposal of RHA, with environmental, social and economic benefits.DOI: http://dx.doi.org/10.4995/CIT2016.2016.3451http://ocs.editorial.upv.es/index.php/CIT/CIT2016Behak Katz, L.; Musso Laespiga, M. (2016). Performance of Low-Volume Roads with Wearing Course Layer of Silty Sandy Soil Modified with Rice Husk Ash and Lime. Editorial Universitat Politècnica de València. 630-637. https://doi.org/10.4995/CIT2016.2015.3451OCS63063

    Global Growth and Trends of In-Body Communication Research—Insight From Bibliometric Analysis

    Get PDF
    A bibliometric analysis was conducted to examine research on in-body communication. This study aimed to assess the research growth in different countries, identify influential authors for potential international collaboration, investigate research challenges, and explore future prospects for in-body communication. A total of 148 articles written in English from journals and conference proceedings were gathered from the Scopus database. These articles cover the period from 2006 until August 2023. VOS Viewer 1.6.19 and Tableau Cloud were used to analyze the data. The analysis reveals that research on in-body communication has shown fluctuations but overall tends to increase. The United States, Finland, and Japan were identified as the leading countries (top three) in terms of publication quantity, while researchers from Norway, Finland, and Morocco received the highest number of citations. The University of Oulu in Finland has emerged as a productive institution in this field. Collaborative research opportunities exist with the countries mentioned above or with authors who have expertise in this topic. The dominant research topic within this field pertains to ultra-wideband (UWB) technology. One of the future challenges in this field is the exploration of optical wireless communication (OWC) as a potential communication medium for in-body devices, such as electronic devices implanted in the human body. This includes improving performance to meet the requirements for in-body communication devices. Additionally, this paper provides further insights into the progress of research on OWC for in-body communication conducted in our laboratory

    Optimization of Enzymatic Logic Gates and Networks for Noise Reduction and Stability

    Full text link
    Biochemical computing attempts to process information with biomolecules and biological objects. In this work we review our results on analysis and optimization of single biochemical logic gates based on enzymatic reactions, and a network of three gates, for reduction of the "analog" noise buildup. For a single gate, optimization is achieved by analyzing the enzymatic reactions within a framework of kinetic equations. We demonstrate that using co-substrates with much smaller affinities than the primary substrate, a negligible increase in the noise output from the logic gate is obtained as compared to the input noise. A network of enzymatic gates is analyzed by varying selective inputs and fitting standardized few-parameters response functions assumed for each gate. This allows probing of the individual gate quality but primarily yields information on the relative contribution of the gates to noise amplification. The derived information is then used to modify experimental single gate and network systems to operate them in a regime of reduced analog noise amplification.Comment: 7 pages in PD

    Phase transitions, double-scaling limit, and topological strings

    Get PDF
    Topological strings on Calabi--Yau manifolds are known to undergo phase transitions at small distances. We study this issue in the case of perturbative topological strings on local Calabi--Yau threefolds given by a bundle over a two-sphere. This theory can be regarded as a q--deformation of Hurwitz theory, and it has a conjectural nonperturbative description in terms of q--deformed 2d Yang--Mills theory. We solve the planar model and find a phase transition at small radius in the universality class of 2d gravity. We give strong evidence that there is a double--scaled theory at the critical point whose all genus free energy is governed by the Painlev\'e I equation. We compare the critical behavior of the perturbative theory to the critical behavior of its nonperturbative description, which belongs to the universality class of 2d supergravity. We also give evidence for a new open/closed duality relating these Calabi--Yau backgrounds to open strings with framing.Comment: 49 pages, 3 eps figures; section added on non-perturbative proposal and 2d gravity; minor typos correcte

    Black Holes and Large Order Quantum Geometry

    Get PDF
    We study five-dimensional black holes obtained by compactifying M theory on Calabi-Yau threefolds. Recent progress in solving topological string theory on compact, one-parameter models allows us to test numerically various conjectures about these black holes. We give convincing evidence that a microscopic description based on Gopakumar-Vafa invariants accounts correctly for their macroscopic entropy, and we check that highly nontrivial cancellations -which seem necessary to resolve the so-called entropy enigma in the OSV conjecture- do in fact occur. We also study analytically small 5d black holes obtained by wrapping M2 branes in the fiber of K3 fibrations. By using heterotic/type II duality we obtain exact formulae for the microscopic degeneracies in various geometries, and we compute their asymptotic expansion for large charges.Comment: 42 pages, 20 eps figures, small correction
    • …
    corecore