20 research outputs found

    Genome Sequence Of Streptomyces Wadayamensis Strain A23, An Endophytic Actinobacterium From Citrus Reticulata.

    Get PDF
    The actinobacterium Streptomyces wadayamensis A23 is an endophyte of Citrus reticulata that produces the antimycin and mannopeptimycin antibiotics, among others. The strain has the capability to inhibit Xylella fastidiosa growth. The draft genome of S. wadayamensis A23 has ~7.0 Mb and 6,006 protein-coding sequences, with a 73.5% G+C content.

    Isolation and enzyme bioprospection of endopytic bacteria associated with plants of Brazilian mangrove ecosystem

    Get PDF
    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems

    Draft genome sequence of <i>Bacillus thuringiensis</i> strain BrMgv02-JM63, a chitinolytic bacterium isolated from oil-contaminated mangrove soil in Brazil

    Get PDF
    Here, we report the draft genome sequence and the automatic annotation of Bacillus thuringiensis strain BrMgv02-JM63. This genome comprises a set of genes involved in the metabolism of chitin and N-acetylglucosamine utilization, thus suggesting the possible role of this strain in the cycling of organic matter in mangrove soils

    Endophytic fungi from the Amazonian plant Paullinia cupana and from Olea europaea isolated using cassava as an alternative starch media source

    Get PDF
    Endophytic fungi live inside plants, apparently do not cause any harm to their hosts and may play important roles in defense and growth promotion. Fungal growth is a routine practice at microbiological laboratories, and the Potato Dextrose Agar (PDA) is the most frequently used medium because it is a rich source of starch. However, the production of potatoes in some regions of the world can be costly. Aiming the development of a new medium source to tropical countries, in the present study, we used leaves from the guarana (a tropical plant from the Amazon region) and the olive (which grows in subtropical and temperate regions) to isolate endophytic fungi using PDA and Manihot Dextrose Agar (MDA). Cassava (Manihot esculenta) was evaluated as a substitute starch source. For guarana, the endophytic incidence (EI) was 90% and 98% on PDA and MDA media, respectively, and 65% and 70% for olive, respectively. The fungal isolates were sequenced using the ITS- rDNA region. The fungal identification demonstrated that the isolates varied according to the host plant and media source. In the guarana plant, 13 fungal genera were found using MDA and six were found using PDA. In the olive plant, six genera were obtained using PDA and 4 were obtained using MDA. The multivariate analysis results demonstrated the highest fungal diversity from guarana when using MDA medium. Interestingly, some genera were isolated from one specific host or in one specific media, suggesting the importance of these two factors in fungal isolation specificity. Thus, this study indicated that cassava is a feasible starch source that could serve as a potential alternative medium to potato medium.This work was supported by a grant from the Foundation for Research Assistance, São Paulo State and Amazon State, Brazil (grant n. 2009/53376-2) and by the National Council for Scientific and Technological Development (CNPq). We thank FAPESP for the M.C.Q. (grant no. 2010/50445-0), J.M. (grant no. 2011/18740-5) and S.T. (grant no. 2010/15192-4) and CNPq for E.F.S. and D.M.L. fellowships

    Metabolic screening for PKS and NRPS in endophytic actinobacteria from citrus reticulata

    Get PDF
    Polyketides and non-ribosomal peptides are natural products widely found in bacteria, fungi and plants. The biological activities associated with these metabolites have attracted special attention in biopharmaceutical studies. Polyketide synthases act similarly to fatty acids synthetases and the whole multi-enzymatic set coordinating precursor and extending unit selection and reduction levels during chain growth. Acting in a similarly orchestrated model, non-ribosomal peptide synthetases biosynthesize NRPs. PKSs-I and NRPSs enzymatic modules and domains are collinearly organized with the parent gene sequence. This arrangement allows the use of degenerated PCR primers to amplify targeted regions in the genes corresponding to specific enzymatic domains such as ketosynthases and acyltransferases in PKSs and adenilation domains in NRPSs. Careful analysis of these short regions allows the classifying of a set of organisms according to their potential to biosynthesize PKs and NRPs. In this work, the biosynthetic potential of a set of 13 endophytic actinobacteria from Citrus reticulata for producing PKs and NRP metabolites was evaluated. The biosynthetic profile was compared to antimicrobial activity. Based on the inhibition promoted, 4 strains were considered for cluster analysis. A PKS/NRPS phylogeny was generated in order to classify some of the representative sequences throughout comparison with homologous genes. Using this approach, a molecular fingerprint was generated to help guide future studies on the most promising strains383333341CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPPQ 306932/2009-12008/00605-1; 2008/06097-8; 2009/03793- 6; 2010/16798-

    Metabolic screening for PKS and NRPS in endophytic actinobacteria from citrus reticulata

    Get PDF
    Polyketides and non-ribosomal peptides are natural products widely found in bacteria, fungi and plants. The biological activities associated with these metabolites have attracted special attention in biopharmaceutical studies. Polyketide synthases act similarly to fatty acids synthetases and the whole multi-enzymatic set coordinating precursor and extending unit selection and reduction levels during chain growth. Acting in a similarly orchestrated model, non-ribosomal peptide synthetases biosynthesize NRPs. PKSs-I and NRPSs enzymatic modules and domains are collinearly organized with the parent gene sequence. This arrangement allows the use of degenerated PCR primers to amplify targeted regions in the genes corresponding to specific enzymatic domains such as ketosynthases and acyltransferases in PKSs and adenilation domains in NRPSs. Careful analysis of these short regions allows the classifying of a set of organisms according to their potential to biosynthesize PKs and NRPs. In this work, the biosynthetic potential of a set of 13 endophytic actinobacteria from Citrus reticulata for producing PKs and NRP metabolites was evaluated. The biosynthetic profile was compared to antimicrobial activity. Based on the inhibition promoted, 4 strains were considered for cluster analysis. A PKS/NRPS phylogeny was generated in order to classify some of the representative sequences throughout comparison with homologous genes. Using this approach, a molecular fingerprint was generated to help guide future studies on the most promising strains.v. 38n.333334

    Culture-Independent Assessment of Rhizobiales-Related Alphaproteobacteria and the Diversity of Methylobacterium in the Rhizosphere and Rhizoplane of Transgenic Eucalyptus

    No full text
    The rhizosphere is an ecosystem exploited by a variety of organisms involved in plant health and environmental sustainability. Abiotic factors influence microorganism-plant interactions, but the microbial community is also affected by expression of heterologous genes from host plants. In the present work, we assessed the community shifts of Alphaproteobacteria phylogenetically related to the Rhizobiales order (Rhizobiales-like community) in rhizoplane and rhizosphere soils of wild-type and transgenic eucalyptus. A greenhouse experiment was performed and the bacterial communities associated with two wild-type (WT17 and WT18) and four transgenic (TR-9, TR-15, TR-22, and TR-23) eucalyptus plant lines were evaluated. The culture-independent approach consisted of the quantification, by real-time polymerase chain reaction (PCR), of a targeted subset of Alphaproteobacteria and the assessment of its diversity using PCR-denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries. Real-time quantification revealed a lesser density of the targeted community in TR-9 and TR-15 plants and diversity analysis by principal components analysis, based on PCR-DGGE, revealed differences between bacterial communities, not only between transgenic and nontransgenic plants, but also among wild-type plants. The comparison between clone libraries obtained from the transgenic plant TR-15 and wild-type WT17 revealed distinct bacterial communities associated with these plants. In addition, a culturable approach was used to quantify the Methylobacterium spp. in the samples where the identification of isolates, based on 16S rRNA gene sequences, showed similarities to the species Methylobacterium nodulans, Methylobacterium isbiliense, Methylobacterium variable, Methylobacterium fujisawaense, and Methylobacterium radiotolerans. Colonies classified into this genus were not isolated from the rhizosphere but brought in culture from rhizoplane samples, except for one line of the transgenic plants (TR-15). In general, the data suggested that, in most cases, shifts in bacterial communities due to cultivation of transgenic plants are similar to those observed when different wild-type cultivars are compared, although shifts directly correlated to transgenic plant cultivation may be found.FAPESP (Foundation for Research Assistance, Sao Paulo State, Brazil)[02/14143-3]FAPESP (Foundation for Research Assistance, Sao Paulo State, Brazil)[03/10527-4]CNPq (National Council of Research, Brazil

    Genetic diversity and plant-growth related features of Burkholderia spp. from sugarcane roots

    No full text
    Brazil is the largest sugarcane producer in the world, mainly due to the development of different management strategies. Recently, microbial-plant related studies revealed that bacterial isolates belonging to the genus Burkholderia are mainly associated with this plant and are responsible for a range of physiological activity. In this study, we properly evaluate the physiological activity and genetic diversity of endophytic and rhizospheric Burkholderia spp. isolates from sugarcane roots grown in the field in Brazil. In total, 39 isolates previously identified as Burkholderia spp. were firstly evaluated for the capability to fix nitrogen, produce siderophores, solubilise inorganic phosphates, produce indole-acetic acid and inhibit sugarcane phytopathogens in vitro. These results revealed that all isolates present at least two positive evaluated activities. Furthermore, a phylogenetic study was carried out using 16S rRNA and gyrB genes revealing that most of the isolates were affiliated with the Burkholderia cepacia complex. Hence, a clear separation given by endophytic or rhizospheric niche occupation was not observed. These results presented an overview about Burkholderia spp. isolates from sugarcane roots and supply information about the physiological activity and genetic diversity of this genus, given direction for further studies related to achieve more sustainable cultivation of sugarcane.FAPESP (Foundation for Research Assistance of Sao Paulo State, Brazil)[08/52407-9]CNPq (National Council of Research, Brazil

    Endophytic population of Pantoea agglomerans in citrus plants and development of a cloning vector for endophytes

    No full text
    Harmless bacteria inhabiting inner plant tissues are termed endophytes. Population fluctuations in the endophytic bacterium Pantoea agglomerans associated with two species of field cultured citrus plants were monitored over a two-year period. The results demonstrated that populations of P. agglomerans fluctuated in Citrus reticulata but not C. sinensis. A cryptic plasmid pPA3.0 (2.9 kb) was identified in 35 out of 44 endophytic isolates of P. agglomerans and was subsequently sequenced. The origins of replication were identified and nine out of 18 open reading frames (ORFs) revealed homology with described proteins. Notably, two ORFs were related to cellular transport systems and plasmid maintenance. Plasmid pPA3.0 was cloned and the gfp gene inserted to generate the pPAGFP vector. The vector was introduced into P. agglomerans isolates and revealed stability was dependent on the isolate genotype, ninety-percent stability values were reached after 60 hours of bacterial cultivation in most evaluated isolates. In order to definitively establish P. agglomerans as an endophyte, the non-transformed bacterium was reintroduced into in vitro cultivated seedlings and the density of inner tissue colonization in inoculated plants was estimated by bacterium re-isolation, while the tissue niches preferred by the bacterium were investigated by scanning electronic microscopy (SEM). Cells from P. agglomerans (strain ARB18) at similar densities were re-isolated from roots, stems and leaves and colonization of parenchyma and xylem tissues were observed. Data suggested that P. agglomerans is a ubiquitous citrus endophyte harboring cryptic plasmids. These characteristics suggest the potential to use the bacterium as a vehicle to introduce new genes in host plants via endophytic bacterial transformation.FAPESP Foundation for Research Assistance, Sao Paulo State, Brazil[98/16262-2]FUN-DECITRUS (Fundo de Defesa da Citricultura, Araraquara, SP, Brazil)FAPESP[00/08498-8]FAPESP[00/13800-5
    corecore