62 research outputs found
The fate of Lake Baikal: how climate change may alter deep ventilation in the largest lake on Earth
Lake Baikal is the oldest, deepest, and most voluminous freshwater lake on Earth. Despite its enormous depth, episodically (almost twice a year) large amounts of surface, cold, and oxygenated water sink until the bottom of the lake due to thermobaric instability, with consequent effects on the ecology of the whole lake. A minimal one-dimensional model is used to investigate how changes in the main external forcing (i.e., wind and lake surface temperature) may affect this deep ventilation mechanism. The effect of climate change is evaluated considering the IPCC RCP8.5 and some idealized scenarios and is quantified by (i) estimating the mean annual downwelling volume and temperature and (ii) analyzing vertical temperature and dissolved oxygen profiles. The results suggest that the strongest impact is produced by alterations of wind forcing, while deep ventilation is resistant to rising lake surface temperature. In fact, the seasons when deep ventilation can occur can be shifted in time by lake warming, but not dramatically modified in their duration. Overall, the results show that Lake Baikal is sensible to climate change, to an extent that the ecosystem and water quality of this unique lacustrine system may undergo profound disturbances
Modelling hydrodynamics and ice formation in a pump-storage system between two Norwegian reservoirs
publishedVersio
Frictional interactions between tidal constituents in tide-dominated estuaries
When different tidal constituents propagate along an estuary, they interact because of the presence of nonlinear terms in the hydrodynamic equations. In particular, due to the quadratic velocity in the friction term, the effective friction experienced by both the predominant and the minor tidal constituents is enhanced. We explore the underlying mechanism with a simple conceptual model by utilizing Chebyshev polynomials, enabling the effect of the velocities of the tidal constituents to be summed in the friction term and, hence, the linearized hydrodynamic equations to be solved analytically in a closed form. An analytical model is adopted for each single tidal constituent with a correction factor to adjust the linearized friction term, accounting for the mutual interactions between the different tidal constituents by means of an iterative procedure. The proposed method is applied to the Guadiana (southern Portugal-Spain border) and Guadalquivir (Spain) estuaries for different tidal constituents (M2, S2, N2, O1, K1) imposed independently at the estuary mouth. The analytical results appear to agree very well with the observed tidal amplitudes and phases of the different tidal constituents. The proposed method could be applicable to other alluvial estuaries with a small tidal amplitude-to-depth ratio and negligible river discharge.info:eu-repo/semantics/publishedVersio
Optimal price-based scheduling of a pumped-storage hydropower plant considering environmental constraints
The paper proposes a novel medium-term scheduling model for a hydropower system composed by a pumped storage hydropower plant connected to a traditional hydropower plant subject to three types of environmental constraints; these deal with the maximum water abstraction from the reservoir thought the turbines and through the pump for energy production, the minimum environmental water flow and the ramping capabilities of water volumes inside the system’s reservoirs. The scheduling problem is formulated for a planning horizon of 1 year with weekly decision stages. The methodology to determine the optimal operation of the plant is based on a stochastic dynamic programming algorithm which allows for an accurate representation of the uncertainties associated to the water inflows and energy prices. Moreover, it facilitates the handling of the non-convex characteristic of the state-dependent constraint on maximum water abstraction from the reservoir. The model is applied to the case of a real hydropower system based on a cascaded watercourse with two conventional hydropower plants in south of Norway to assess the economic benefits of having a pumping unit and the technical impact of the above-mentioned environmental constraints. Furthermore, this work proposes a methodology to analyze the optimal operation of the hydropower system, computed for different temporal resolutions, in order to investigate the techno-economic impact of the constraints involving dependencies on the states of the system, the different environmental constraints and other seasonal effects on the accuracy and the applicability of medium-term scheduling models. Further case studies assess the computational burden and the precision of the results when adopting a finer discretization of the state variables of the dynamic-programming-based methodology. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Optimal price-based scheduling of a pumped-storage hydropower plant considering environmental constraintspublishedVersio
Analysis of environmental impacts of a pump-storage system between two Norwegian reservoirs considering climate scenarios
publishedVersio
Moored observations of turbulent mixing events in deep Lake Garda (I)
Deep water circulation and mixing processes in deep lakes are largely
unknown, although they are responsible for the transport of matter, nutrients
and pollutants. Such a lack of knowledge cannot be reliably provided by
numerical hydrodynamic modelling studies because detailed observations are
typically not available to validate them. To overcome some of these
deficiencies, a dedicated yearlong mooring comprising 100 high-resolution
temperature sensors and a single current meter were located in the deeper half
of the 344 m deepest point of the subalpine Lake Garda (Italy). The
observations show peaks and calms of turbulent exchange, besides ubiquitous
internal wave activity. In late winter, northerly winds activate episodic deep
convective overturning, the dense water being subsequently advected along the
lake-floor. Besides deep convection, such winds also set-up seiches and
inertial waves that are associated with about 100 times larger turbulence
dissipation rates than that by semidiurnal internal wave breaking observed in
summer. In the lower 60 m above the lake-floor however, the average turbulence
dissipation rate is approximately constant in value year-around, being about 10
times larger than open-ocean values, except during deep convection episodes.Comment: 42 pages, 10 figure
Wind variability and Earth’s rotation as drivers of transport in a deep, elongated subalpine lake: The case of Lake Garda
The effects of wind forcing and Earth’s rotation on the transport processes in Lake Garda, Italy, are investigated for the first time under different thermal stratification conditions and typical diurnal wind cycles. Numerical simulations are performed by means of a modeling chain composed of a meteorological (WRF) and a hydrodynamic (Delft3D) model. Transport processes are studied through the combined analysis of the residual (time averaged) flow field and the trajectories of Lagrangian particles. Results show that strong currents develop in winter under the forcing of synoptic northerly Föhn winds, especially in the elongated northern region, where winds are channeled by the steep orography. Significant water volumes are displaced laterally by Ekman transport, producing intense downwelling and upwelling along the steep shores. Instead summer patterns are controlled by the diurnal cycle of local breezes, alternately blowing along the main axis of the lake. The resulting circulation reveals counterclockwise gyres in the northern part, driven by the alternating wind direction and affected by Coriolis force. The analysis suggests that complex circulations can develop in lakes with relatively simple geometries, like the narrow trunk region of Lake Garda, where the effect of Earth’s rotation unexpectedly influences the transport patterns
Deep-mixing and deep-cooling events in Lake Garda: Simulation and mechanisms
A calibrated three-dimensional numerical model (Delft3D) and in-situ observations are used to study the relation between deep-water temperature and deep mixing in Lake Garda (Italy). A model-observation comparison indicates that the model is able to adequately capture turbulent kinetic energy production in the surface layer and its vertical propagation during unstratified conditions. From the modeling results several processes are identified to affect the deep-water temperature in Lake Garda. The first process is thermocline tilting due to strong and persistent winds, leading to a temporary disappearance of stratification followed by vertical mixing. The second process is turbulent cooling, which acts when vertical temperature gradients are nearly absent over the whole depth and arises as a combination of buoyancy-induced turbulence production due to surface cooling and turbulence production by strong winds. A third process is differential cooling, which causes cold water to move from the shallow parts of the lake to deeper parts along the sloping bottom. Two of these processes (thermocline tilting and turbulent cooling) cause deep-mixing events, while deep-cooling events are mainly caused by turbulent cooling and differential cooling. Detailed observations of turbulence quantities and lake temperature, available at the deepest point of Lake Garda for the year 2018, indicate that differential cooling was responsible for the deep-water cooling at that location. Long-term simulations of deep-water temperature and deep mixing appear to be very sensitive to the applied wind forcing. This sensitivity is one of the main challenges in making projections of future occurrences of episodic deep mixing and deep cooling under climate change
Multiple states for flow through a collapsible tube with discontinuities
ISSN:0022-1120ISSN:1469-764
- …