8 research outputs found

    The origin of the X-ray emitting plasma in the eastern edge of the Cygnus Loop

    Full text link
    The Cygnus Loop is interacting with a protrusion of the cavity wall in its eastern edge (the XA region), where the X-ray emission is very bright. The complexity of the environment and the non-linear physical processes of the shock-cloud interaction make the origin of the X-ray emission still not well understood. Our purpose is to understand the physical origin of the X-ray emission in the XA region, addressing, in particular, the role of thermal conduction in the interaction process. We analyzed two XMM-Newton data sets, performing image analysis and spatially resolved spectral analysis on a set of homogeneous regions. We applied a recently developed diagnostic tool to compare spectral analysis results with predictions of theoretical models, and to estimate the efficiency of thermal conduction on the X-ray emitting shocked plasma. We found that the inhomogeneous cavity wall contains both large clumps (the protrusion) and small isolated clumps with different densities. A large indentation bent over to the south is detected. The abundance of the surrounding ISM is ~0.2 times solar value. We confirmed the important role of thermal conduction in the evolution of X-ray emitting plasma during shock-cloud interaction.Comment: 7 pages, 5 figures, MNRAS in pres

    Wind clumping and the wind-wind collision zone in the Wolf-Rayet binary gamma Velorum

    Get PDF
    We present XMM-Newton observations of gamma^2 Velorum (WR 11, WC8+O7.5III, P = 78.53 d), a nearby Wolf-Ray binary system, at its X-ray high and low states. At high state, emission from a hot collisional plasma dominates from about 1 to 8 keV. At low state, photons between 1 and 4 keV are absorbed. The hot plasma is identified with the shock zone between the winds of the primary Wolf-Rayet star and the secondary O giant. The absorption at low state is interpreted as photoelectric absorption in the Wolf-Rayet wind. This absorption allows us to measure the absorbing column density and to derive a mass loss rate 8x10^{-6} M_sun/yr for the WC8 star. This mass loss rate, in conjunction with a previous Wolf-Rayet wind model, provides evidence for a clumped WR wind. A clumping factor of 16 is required. The X-ray spectra below 1 keV (12 Ang) show no absorption and are essentially similar in both states. There is a rather clear separation in that emission from a plasma hotter than 5 MK is heavily absorbed in low state while the cooler plasma is not. This cool plasma must come from a much more extended region than the hot material. The Neon abundance in the X-ray emitting material is 2.5 times the solar value. The unexpected detection of CV (25.3 Ang) and CVI (31.6 Ang) radiative recombination continua at both phases indicates the presence of a cool (~40,000 K) recombination region located far out in the binary system.Comment: 16 page

    Detection of accretion X-rays from QS Vir: cataclysmic or a lot of hot air?

    Get PDF
    An XMM-Newton observation of the nearby "pre-cataclysmic" short-period (P_orb = 3.62 hr) binary QS Vir (EC 13471-1258) revealed regular narrow X-ray eclipses when the white dwarf passed behind its M2-4 dwarf companion. The X-ray emission provides a clear signature of mass transfer and accretion onto the white dwarf. The low-resolution XMM-Newton EPIC spectra are consistent with a cooling flow model and indicate an accretion rate of Mdot= 1.7\times10^-13M\odot/yr. At 48 pc distant, QS Vir is then the second nearest accreting cataclysmic variable known, with one of the lowest accretion rates found to date for a non-magnetic system. To feed this accretion through a wind would require a wind mass loss rate of Mdot ~ 2 \times 10^-12M\odot/yr if the accretion efficiency is of the order of 10%. Consideration of likely mass loss rates for M dwarfs suggests this is improbably high and pure wind accretion unlikely. A lack of accretion disk signatures also presents some difficulties for direct Roche lobe overflow. We speculate that QS Vir is on the verge of Roche lobe overflow, and that the observed mass transfer could be supplemented by upward chromospheric flows on the M dwarf, analogous to spicules and mottles on the Sun, that escape the Roche surface to be subsequently swept up into the white dwarf Roche lobe. If so, QS Vir would be in a rare evolutionary phase lasting only a million years. The X-ray luminosity of the M dwarf estimated during primary eclipse is L_X = 3 \times 10^28 erg/s, which is consistent with that of rapidly rotating "saturated" K and M dwarfs.Comment: ApJ in pres

    Human Engineered Heart Tissue as a Versatile Tool in Basic Research and Preclinical Toxicology

    Get PDF
    Human embryonic stem cell (hESC) progenies hold great promise as surrogates for human primary cells, particularly if the latter are not available as in the case of cardiomyocytes. However, high content experimental platforms are lacking that allow the function of hESC-derived cardiomyocytes to be studied under relatively physiological and standardized conditions. Here we describe a simple and robust protocol for the generation of fibrin-based human engineered heart tissue (hEHT) in a 24-well format using an unselected population of differentiated human embryonic stem cells containing 30–40% α-actinin-positive cardiac myocytes. Human EHTs started to show coherent contractions 5–10 days after casting, reached regular (mean 0.5 Hz) and strong (mean 100 µN) contractions for up to 8 weeks. They displayed a dense network of longitudinally oriented, interconnected and cross-striated cardiomyocytes. Spontaneous hEHT contractions were analyzed by automated video-optical recording and showed chronotropic responses to calcium and the β-adrenergic agonist isoprenaline. The proarrhythmic compounds E-4031, quinidine, procainamide, cisapride, and sertindole exerted robust, concentration-dependent and reversible decreases in relaxation velocity and irregular beating at concentrations that recapitulate findings in hERG channel assays. In conclusion this study establishes hEHT as a simple in vitro model for heart research
    corecore