189 research outputs found

    The Multi-engine ASP Solver ME-ASP: Progress Report

    Full text link
    MEASP is a multi-engine solver for ground ASP programs. It exploits algorithm selection techniques based on classification to select one among a set of out-of-the-box heterogeneous ASP solvers used as black-box engines. In this paper we report on (i) a new optimized implementation of MEASP; and (ii) an attempt of applying algorithm selection to non-ground programs. An experimental analysis reported in the paper shows that (i) the new implementation of \measp is substantially faster than the previous version; and (ii) the multi-engine recipe can be applied to the evaluation of non-ground programs with some benefits

    Disjunctive Answer Set Solvers via Templates

    Get PDF
    Answer set programming is a declarative programming paradigm oriented towards difficult combinatorial search problems. A fundamental task in answer set programming is to compute stable models, i.e., solutions of logic programs. Answer set solvers are the programs that perform this task. The problem of deciding whether a disjunctive program has a stable model is Σ2P\Sigma^P_2-complete. The high complexity of reasoning within disjunctive logic programming is responsible for few solvers capable of dealing with such programs, namely DLV, GnT, Cmodels, CLASP and WASP. In this paper we show that transition systems introduced by Nieuwenhuis, Oliveras, and Tinelli to model and analyze satisfiability solvers can be adapted for disjunctive answer set solvers. Transition systems give a unifying perspective and bring clarity in the description and comparison of solvers. They can be effectively used for analyzing, comparing and proving correctness of search algorithms as well as inspiring new ideas in the design of disjunctive answer set solvers. In this light, we introduce a general template, which accounts for major techniques implemented in disjunctive solvers. We then illustrate how this general template captures solvers DLV, GnT and Cmodels. We also show how this framework provides a convenient tool for designing new solving algorithms by means of combinations of techniques employed in different solvers.Comment: To appear in Theory and Practice of Logic Programming (TPLP

    A Multi-Engine Approach to Answer Set Programming

    Full text link
    Answer Set Programming (ASP) is a truly-declarative programming paradigm proposed in the area of non-monotonic reasoning and logic programming, that has been recently employed in many applications. The development of efficient ASP systems is, thus, crucial. Having in mind the task of improving the solving methods for ASP, there are two usual ways to reach this goal: (i)(i) extending state-of-the-art techniques and ASP solvers, or (ii)(ii) designing a new ASP solver from scratch. An alternative to these trends is to build on top of state-of-the-art solvers, and to apply machine learning techniques for choosing automatically the "best" available solver on a per-instance basis. In this paper we pursue this latter direction. We first define a set of cheap-to-compute syntactic features that characterize several aspects of ASP programs. Then, we apply classification methods that, given the features of the instances in a {\sl training} set and the solvers' performance on these instances, inductively learn algorithm selection strategies to be applied to a {\sl test} set. We report the results of a number of experiments considering solvers and different training and test sets of instances taken from the ones submitted to the "System Track" of the 3rd ASP Competition. Our analysis shows that, by applying machine learning techniques to ASP solving, it is possible to obtain very robust performance: our approach can solve more instances compared with any solver that entered the 3rd ASP Competition. (To appear in Theory and Practice of Logic Programming (TPLP).)Comment: 26 pages, 8 figure

    The Design of the Fifth Answer Set Programming Competition

    Full text link
    Answer Set Programming (ASP) is a well-established paradigm of declarative programming that has been developed in the field of logic programming and nonmonotonic reasoning. Advances in ASP solving technology are customarily assessed in competition events, as it happens for other closely-related problem-solving technologies like SAT/SMT, QBF, Planning and Scheduling. ASP Competitions are (usually) biennial events; however, the Fifth ASP Competition departs from tradition, in order to join the FLoC Olympic Games at the Vienna Summer of Logic 2014, which is expected to be the largest event in the history of logic. This edition of the ASP Competition series is jointly organized by the University of Calabria (Italy), the Aalto University (Finland), and the University of Genova (Italy), and is affiliated with the 30th International Conference on Logic Programming (ICLP 2014). It features a completely re-designed setup, with novelties involving the design of tracks, the scoring schema, and the adherence to a fixed modeling language in order to push the adoption of the ASP-Core-2 standard. Benchmark domains are taken from past editions, and best system packages submitted in 2013 are compared with new versions and solvers. To appear in Theory and Practice of Logic Programming (TPLP).Comment: 10 page

    Computing Answer Sets of a Logic Program via-enumeration of SAT certificates

    Get PDF
    Answer set programming is a new programming paradigm proposed based on the answer set semantics of Prolog. It is well known that an answer set for a logic program is also a model of the program\u27s completion. The converse is true when the logic program is tight . Lin and Zhao showed that for non-tight programs the models of completion which do not correspond to answer sets can be eliminated by adding to the completion what they called loop formulas . Nevertheless, their solver ASSAT 1 has some disadvantages: it can work only with basic rules, and it can compute only one answer set. Answer set solver CMODELS-1 is a system that computes answer sets for logic programs that are tight or can be transformed into tight programs, and does not suffer from these limitations. We are going to present a new system CMODELS-2 , that is able to fix ASSAT\u27s disadvantages. Another attractive feature of the new system is that it organizes the search process more efficiently then ASSAT, because it does not explore the same part of the search tree more than once. In the rest of the paper we will omit number 2 in the name of the system

    CASP Solutions for Planning in Hybrid Domains

    Full text link
    CASP is an extension of ASP that allows for numerical constraints to be added in the rules. PDDL+ is an extension of the PDDL standard language of automated planning for modeling mixed discrete-continuous dynamics. In this paper, we present CASP solutions for dealing with PDDL+ problems, i.e., encoding from PDDL+ to CASP, and extensions to the algorithm of the EZCSP CASP solver in order to solve CASP programs arising from PDDL+ domains. An experimental analysis, performed on well-known linear and non-linear variants of PDDL+ domains, involving various configurations of the EZCSP solver, other CASP solvers, and PDDL+ planners, shows the viability of our solution.Comment: Under consideration in Theory and Practice of Logic Programming (TPLP

    A Tool for Encoding Controlled Natural Language Specifications as ASP Rules.

    Get PDF
    Answer Set Programming (ASP) is a popular declarative programming language for solving hard combinatorial problems. Albeit ASP has been widely adopted in both academic and industrial contexts, it might be difficult for people who are not familiar with logic programming conventions to use it. In this paper, we propose a translation of English sentences expressed in a controlled natural language (CNL) form into ASP. In particular, we first provide a definition of the type of sentences allowed by our CNL and their translation as ASP rules, and then exemplify the usage of CNL for the specification of well-known combinatorial problems

    On the Configuration of More and Less Expressive Logic Programs

    Get PDF
    The decoupling between the representation of a certain problem, i.e., its knowledge model, and the reasoning side is one of main strong points of model-based Artificial Intelligence (AI). This allows, e.g. to focus on improving the reasoning side by having advantages on the whole solving process. Further, it is also well-known that many solvers are very sensitive to even syntactic changes in the input. In this paper, we focus on improving the reasoning side by taking advantages of such sensitivity. We consider two well-known model-based AI methodologies, SAT and ASP, define a number of syntactic features that may characterise their inputs, and use automated configuration tools to reformulate the input formula or program. Results of a wide experimental analysis involving SAT and ASP domains, taken from respective competitions, show the different advantages that can be obtained by using input reformulation and configuration. Under consideration in Theory and Practice of Logic Programming (TPLP).Comment: Under consideration in Theory and Practice of Logic Programming (TPLP

    Answer Set Programming based on Propositional Satisfiability

    Get PDF
    Answer set programming (ASP) emerged in the late 1990s as a new logic programming paradigm that has been successfully applied in various application domains. Also motivated by the availability of efficient solvers for propositional satisfiability (SAT), various reductions from logic programs to SAT were introduced. All these reductions, however, are limited to a subclass of logic programs or introduce new variables or may produce exponentially bigger propositional formulas. In this paper, we present a SAT-based procedure, called ASPSAT, that (1) deals with any (nondisjunctive) logic program, (2) works on a propositional formula without additional variables (except for those possibly introduced by the clause form transformation), and (3) is guaranteed to work in polynomial space. From a theoretical perspective, we prove soundness and completeness of ASPSAT. From a practical perspective, we have (1) implemented ASPSAT in Cmodels, (2) extended the basic procedures in order to incorporate the most popular SAT reasoning strategies, and (3) conducted an extensive comparative analysis involving other state-of-the-art answer set solvers. The experimental analysis shows that our solver is competitive with the other solvers we considered and that the reasoning strategies that work best on ‘small but hard’ problems are ineffective on ‘big but easy’ problems and vice versa

    The SAT-based Approach to Separation Logic

    Get PDF
    The SAT-based approach to the decision problem for expressive, decidable, quantifier-free first-order theories has been investigated with remarkable results at least since 1993. One such theory, successfully employed in the formal verification of complex, infinite state systems, is Separation Logic (SL), which combines Boolean logic with arithmetic constraints of the form x − y ⋈ c, where ⋈ is ≤, , ≥, =, or ≠. The SAT-based approach to SL was first proposed and implemented in 1999: the results in terms of performance were good, and since then a number of other systems for SL have appeared. In this paper we focus on the problem of building efficient SAT-based decision procedures for SL. We present the basic procedure and four optimizations that improve dramatically its effectiveness in most cases: (a) IS 2 preprocessing, (b) early pruning, (c) model reduction, and (d) best reason detection. For each technique we give an example of how it might improve the performance. Furthermore, for the first three techniques, we give a pseudo-code representation and formally state the soundness and completeness of the resulting optimized procedure. We also show how it is possible to check the satisfiability of valuations involving constraints of the form x − y < c using the Bellman-Ford algorithm. Lastly, we present an extensive comparative experimental analysis, showing that our solver TSAT++, built along the lines described in this paper, is currently the state of the art on various classes of problems, including randomly generated, hand-made, and real-world instance
    corecore