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Abstract

Answer set programming is a declarative programming paradigm oriented towards diffi-
cult combinatorial search problems. A fundamental task in answer set programming is
to compute stable models, i.e., solutions of logic programs. Answer set solvers are the
programs that perform this task. The problem of deciding whether a disjunctive program
has a stable model is ΣP

2 -complete. The high complexity of reasoning within disjunctive
logic programming is responsible for few solvers capable of dealing with such programs,
namely dlv, gnt, cmodels, clasp and wasp. In this paper we show that transition sys-
tems introduced by Nieuwenhuis, Oliveras, and Tinelli to model and analyze satisfiability
solvers can be adapted for disjunctive answer set solvers. Transition systems give a unify-
ing perspective and bring clarity in the description and comparison of solvers. They can
be effectively used for analyzing, comparing and proving correctness of search algorithms
as well as inspiring new ideas in the design of disjunctive answer set solvers. In this light,
we introduce a general template, which accounts for major techniques implemented in dis-
junctive solvers. We then illustrate how this general template captures solvers dlv, gnt,
and cmodels. We also show how this framework provides a convenient tool for design-
ing new solving algorithms by means of combinations of techniques employed in different
solvers.
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1 Introduction

Answer set programming (Marek and Truszczyński 1999; Niemelä 1999; Baral 2003;

Eiter et al. 1997; Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991) is a declar-

ative programming paradigm oriented towards difficult combinatorial search prob-

lems. The idea of answer set programming (ASP) is to represent a given problem
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with a logic program, whose answer sets correspond to solutions of the problem (see

e.g., Lifschitz 1999). ASP has been applied to solve problems in various areas of

science and technology including graph-theoretic problems arising in zoology and

linguistics (Brooks et al. 2007), team building problems in container terminal (Ricca

et al. 2012), and product configuration tasks (Soininen and Niemelä 1999). A fun-

damental task in ASP is to compute stable models of logic programs. Answer set

solvers are the programs that perform this task. There were sixteen answer set

solvers participating in the recent Fifth Answer Set Programming Competition1.

Gelfond and Lifschitz introduced logic programs with disjunctive rules (Gelfond

and Lifschitz 1991). The problem of deciding whether a disjunctive program has

a stable model is ΣP
2 -complete (Eiter and Gottlob 1993). The problem of decid-

ing whether a non-disjunctive program has a stable model is NP-complete. The

high complexity of reasoning within disjunctive logic programming stems from two

sources: first, there is a potentially exponential number of candidate models, and,

second, the hardness of checking whether a candidate model is a stable model of

a propositional disjunctive logic program is co-NP-complete. Only five answer set

systems can solve disjunctive programs: dlv (Leone et al. 2006), gnt (Janhunen

et al. 2006), cmodels (Lierler 2005), clasp (Gebser et al. 2013) and wasp (Alviano

et al. 2013).

Several formal approaches have been used to describe and compare search pro-

cedures implemented in answer set solvers. These approaches range from a pseudo-

code representation of the procedures (Giunchiglia and Maratea 2005; Giunchiglia

et al. 2008), to tableau calculi (Gebser and Schaub 2006; Gebser and Schaub 2013),

to abstract frameworks via transition systems (Lierler 2008; Lierler 2011; Lierler

and Truszczynski 2011). The latter method originates from the work by Nieuwen-

huis et al. (2006), where authors propose to use transition systems to describe the

Davis-Putnam-Logemann-Loveland (dpll) procedure (Davis et al. 1962). Nieuwen-

huis et al. introduce an abstract framework called dpll graph, that captures what

states of computation are, and what transitions between states are allowed. Ev-

ery execution of the dpll procedure corresponds to a path in the dpll graph.

Some edges may correspond to unit propagation steps, some to branching, some to

backtracking.

Such an abstract way of presenting algorithms simplifies their analysis. This ap-

proach has been adapted (Lierler 2011; Lierler and Truszczynski 2011) to describing

answer set solvers for non-disjunctive programs including smodels, cmodels, and

clasp. This type of graphs has been used to relate algorithms in precise mathemat-

ical terms. Indeed, once we represent algorithms via graphs, comparing the graphs

translates into studying the relationships of underlying algorithms. More generally,

the unifying perspective of transition systems brings clarity in the description and

comparison of solvers. Practically, such graph representations may serve as an effec-

tive tool for analyzing, comparing, proving correctness of, and reasoning formally

1 https://www.mat.unical.it/aspcomp2014/FrontPage#Participant_Teams
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about the underlying search algorithms. It may also inspire new ideas in the design

of solvers.

In this paper we present transition systems that suit multiple disjunctive answer

set solvers. We define a general framework, a graph template, which accounts for

major techniques implemented in disjunctive answer set solvers excluding back-

jumping and learning. We study formal properties of this template and we use the

template to describe gnt, cmodels and dlv implementing plain backtracking. We

then show how a graph template facilitates a design of new solving algorithms by

means of combinations of techniques employed in different solvers. For instance, we

present a new abstract solver that can be seen as a hybrid between cmodels and

gnt. We also present how different solvers may be compared by means of transition

systems. In particular, we illustrate a close relationship between answer set solvers

dlv and cmodels through the related graphs. The fact that proposed framework

does not account for backjumping and learning is one of the reasons that prevents

us from capturing such advanced disjunctive answer set solvers as clasp and wasp.

It is a direction of future work to investigate how the proposed framework can be

adjusted to accommodate these solvers in full generality.

The paper is structured as follows. Section 2 introduces required preliminar-

ies. Section 3 presents a first abstract solver related to cmodels. Section 4 de-

fines our general template that accounts for techniques implemented in disjunctive

solvers, and Section 5 uses this template to define abstract frameworks for disjunc-

tive solvers. Proofs are presented in Section 6. Section 7 discusses related work and

concludes with the final remarks.

The current paper builds on the content presented by Brochenin et al. (2014). It

enhances the earlier work by introducing notions of a graph template, “propagator

conditions”, and “approximating pairs“ that allow to more uniformly account for

major techniques implemented in disjunctive answer set solvers. Complete proofs

of the formal results are also provided.

2 Preliminaries

2.1 Formulas, Logic Programs, and Program’s Completion

Formulas. Atoms are Boolean variables over {true, false}. The symbols ⊥ and >
are the false and the true constants, respectively. The letter l denotes a literal,

that is an atom a or its negation ¬a, and l is the complement of l, i.e., literal a for

¬a and literal ¬a for a. Propositional formulas are logical expressions defined over

atoms and symbols ⊥, > in usual way. A finite disjunction of literals is a clause. We

identify an empty clause with the symbol ⊥. A conjunction (resp. a disjunction)

of literals will sometimes be seen as a set, containing each of its literals. Since a

clause is identified with a set of its literals, there are no repetition of literals in a

clause. A CNF formula is a finite conjunction (alternatively, a set) of clauses. Since

a CNF formula is identified with a set of clauses, there are no repetition of clauses

in a CNF formula.

For a conjunction (resp. a disjunction) D of literals, by D we denote the disjunc-
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tion (resp. the conjunction) of the complements of the elements of D. For example,

a ∨ ¬b denotes ¬a∧ b, while a ∧ ¬b denotes ¬a∨ b. For a set L of literals, by L∨ we

denote the disjunction of its elements and L∧ the conjunction of its elements; by

atoms(L) we denote the set of atoms occurring in L. For a set N of sets of literals by

atoms(N) we denote the set of atoms occurring in the elements of N . For example,

atoms({a,¬b}) = {a, b} and atoms({{a}, {¬b}}) = {a, b}. For a set L of literals,

by L+ we denote atoms that occur positively in L. For instance, {a,¬b}+ = {a}.
For a set X of atoms and a set L of literals, by L|X we denote the maximal subset

of L over X. For example, {a,¬b, c}|{a,b} = {a,¬b}.
A (truth) assignment to a set X of atoms is a function from X to {false, true}. An

assignment satisfies a formula F if F evaluates to true under this assignment. We

call an assignment that satisfies formula F a satisfying assignment or a (classical)

model for F . If F evaluates to false under an assignment, we say that this assignment

contradicts F . If F has no model we say that F is unsatisfiable. For sets X and Y

of atoms such that X ⊆ Y , we identify X with an assignment to Y as follows: if

a ∈ X then a maps to true, while if a ∈ Y \X then a maps to false. We also identify

a consistent set L of literals (i.e., a set that does not contain both a literal and its

complement) with an assignment to atoms(L) as follows: if a ∈ L then a maps to

true, while if ¬a ∈ L then a maps to false. The set M is a complete set of literals

over the set of atoms X if atoms(M) = X; hence a consistent and complete set of

literals over X represents an assignment to X.

Logic Programs. A head is a (possibly empty) disjunction of atoms. A body is an

expression of the form

a1, . . . , aj , not aj+1, . . . , not ak (1)

where a1, . . . , ak are atoms, and not is the negation-as-failure operator. We identify

body (1) with the following conjunction of literals

a1 ∧ . . . ∧ aj ∧ ¬aj+1 ∧ . . . ∧ ¬ak.

Expressions a1, . . . , aj and not aj+1, . . . , not ak are called positive and negative parts

of the body, respectively. Recall that we sometimes view a conjunction of literals as

a set containing all of its literals. Thus, given body B we may write an expression

b ∈ B, which means that atom b occurs in the positive part of the body. Similarly,

an expression ¬b ∈ B means that the atom b (or, in other words, expression not b)

occurs in the negative part of the body.

A disjunctive rule is an expression of the form A← B, where A is a head and B is

a body. If A is empty we drop it from the expression. A disjunctive logic program is

a finite set of disjunctive rules. We call a rule non-disjunctive if its head contains no

more than one atom. A program is non-disjunctive if it consists of non-disjunctive

rules. By atoms(Π ) we denote the set of atoms occurring in a logic program Π . If

we understand A← B as a classical logic implication, we can see any rule A← B

as logically equivalent to clause A ∨ B (if A is an empty clause then we view the

rule as the clause B). This allows us to view a program Π as a CNF formula when

useful. Conversely, we identify CNF formulas with logic programs: syntactically,
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every clause C in a given formula is seen as a rule ← C. For instance a1 ∨ ¬a2 is

seen as a rule ← not a1, a2.

The presented definition of a logic program accounts for propositional programs

only. Indeed, all modern disjunctive answer set solvers consider propositional pro-

grams only. In practice, answer set programmers devise programs with variables.

Software systems called grounders (Syrjänen 2001; Perri et al. 2007) are used to

take a logic program with variables as its input and produce a propositional pro-

gram as its output so that the resulting propositional program has the same answer

sets as the input program.

Reduct and Supporting Rules. In the following definition we write rules in the form

A ← B1, B2 where B1 denotes the positive part of the body, whereas B2 denotes

the negative part of the body. The reduct Π X of a disjunctive program Π with

respect to a set X of atoms is obtained from Π by deleting each rule A ← B1, B2

such that X ∩ atoms(B2) 6= ∅ and replacing each remaining rule A← B1, B2 with

A← B1. A set X of atoms is an answer set of a program Π if X is minimal among

the sets of atoms that satisfy ΠX .

For a program Π , an atom a, and a set L of literals, we call any rule A∨ a← B

in Π a supporting rule for a with respect to L when L ∩ (B ∪A) = ∅.
A consistent and complete set L of literals over atoms(Π ) is

1. a classical model of Π if L satisfies every rule in Π ;

2. a supported model of Π if L is a classical model of Π and for every atom

a ∈ L+ there is a supporting rule for a with respect to L;

3. a stable model of program Π if L+ is an answer set of Π.

Completion. The completion comp(Π ) of a program Π is the formula that consists

of Π and the formulas

{¬a ∨
∨

A∨a←B∈Π

(B ∧A) | a ∈ atoms(Π )}. (2)

This formula has the property that any stable model of Π is a classical model of

comp(Π ). The converse does not hold in general.

For a program Π and a consistent set L of literals over atoms(Π ), a set X of

atoms over atoms(Π ) is said to be unfounded (Leone et al. 1997) on L with respect

to the program Π when for each atom a ∈ X and each rule A← B ∈ Π such that

a ∈ A, either of the following conditions hold

1. L ∩B 6= ∅,
2. X ∩B 6= ∅, or

3. (A \X) ∩ L 6= ∅.

We restate Theorem 4.6 from Leone et al. (1997) that relates the notions of

unfounded set and stable model.

Theorem 1

For a program Π and a consistent and complete set L of literals over atoms(Π ), L
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∅, ⊥, a, ¬a, a∆, ¬a∆, a ⊥, ⊥ a, a∆ ⊥, ⊥ a∆, ¬a ⊥, ⊥ ¬a, ¬a∆ ⊥, ⊥ ¬a∆,
a ¬a, a∆ ¬a, a ¬a∆, a∆ ¬a∆, ⊥ a ¬a, ⊥ a∆ ¬a, ⊥ a ¬a∆, ⊥ a∆ ¬a∆,

a ¬a ⊥, a∆ ¬a ⊥, a ¬a∆ ⊥, a∆ ¬a∆ ⊥, a ⊥ ¬a, a∆ ⊥ ¬a, a ⊥ ¬a∆, a∆ ⊥ ¬a∆,
¬a a, ¬a∆ a, ¬a a∆, ¬a∆ a∆, ⊥ ¬a a, ⊥ ¬a∆ a, ⊥ ¬a a∆, ⊥ ¬a∆ a∆,

¬a a ⊥, ¬a∆ a ⊥, ¬a a∆ ⊥, ¬a∆ a∆ ⊥, ¬a ⊥ a, ¬a∆ ⊥ a, ¬a ⊥ a∆, ¬a∆ ⊥ a∆.

Fig. 1. Records relative to {a}.

is a stable model of Π if and only if L is a classical model of Π and no non-empty

subset of L+ is an unfounded set on L with respect to Π .

This theorem is crucial for understanding key computational ideas behind modern

answer set solvers.

2.2 Abstract dpll

The Davis–Putnam–Logemann–Loveland (dpll) algorithm from Davis et al. (1962)

is a well-known method that exhaustively explores sets of literals to generate classi-

cal models of a propositional formula. Most satisfiability and non-disjunctive answer

set solvers are based on variations of the dpll procedure that is a classical back-

track search-based algorithm. We now review the abstract transition system for

dpll proposed by Nieuwenhuis et al. (2006), which is an alternative to common

pseudo-code descriptions of backtrack search-based algorithms. For our purposes it

is convenient to state dpll as the procedure applied to a logic program in order to

find its classical models.

For a set X of atoms, a record relative to X is a string L composed of literals

over X or the symbol ⊥ so that there are no repetitions, and some literals l may

be annotated as l∆. The annotated literals are called decision literals. Figure 1

presents the set of all records relative to the singleton set {a}. We say that a

record L is inconsistent if it contains both a literal l and its complement l, or if it

contains ⊥, and consistent otherwise. For instance, only five records in Figure 1,

namely ∅, a, ¬a, a∆ and ¬a∆, are consistent. We will sometime view a record as

the set containing all its elements disregarding their annotations. For example, a

record b∆ ¬a is identified with the set {¬a, b}. A basic state relative to X is either

1. a record relative to X,

2. Ok(L) where L is a record relative to X, or

3. the distinguished state Failstate.

Each program Π determines its dpll graph DPΠ . The set of nodes of DPΠ

consists of the basic states relative to atoms(Π ). A node in the graph is terminal

if no edge originates from it. The state ∅ is called initial. The edges of the graph

DPΠ are specified by the transition rules presented in Figure 2.

Intuitively, every state of the dpll graph represents some hypothetical state of

the dpll computation whereas a path in the graph is a description of a process

of search for a classical model of a given program. The rule Unit asserts that we

can add a literal that is a logical consequence of our previous decisions and the
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Conclude : L =⇒ Failstate if

{
L is inconsistent and
L contains no decision literals

Backtrack : Ll∆L′ =⇒ Ll if

{
Ll∆L′ is inconsistent and
L′ contains no decision literals

Unit : L =⇒ Ll if

 l does not occur in L and
a rule in Π is equivalent to C ∨ l and
all the literals of C occur in L

Decide : L =⇒ Ll∆ if

{
L is consistent and

neither l nor l occur in L

Success : L =⇒ Ok(L) if no other rule applies

Fig. 2. Transitions of the graph DPΠ .

given program. The rule Decide asserts that we make an arbitrary decision to add

a literal or, in other words, to assign a value to an atom. Since this decision is

arbitrary, we are allowed to backtrack at a later point. The rule Backtrack asserts

that the present state of computation is inconsistent but can be fixed: at some point

in the past we added a decision literal whose value we can now reverse. The rule

Conclude asserts that the current state of computation has failed and cannot be

fixed. The rule Success asserts that the current state of computation corresponds

to a successful outcome.

We say that a graph G checks a set N of sets of literals when all the following

conditions hold:

1. G is finite and acyclic;

2. Any terminal state in G is either Failstate or of the form Ok(L);

3. If a state Ok(L) is reachable from the initial state in G then L|atoms(N) ∈ N ;

4. Failstate is reachable from the initial state in G if and only if N is empty.

Proposition 1

For any program Π , the graph DPΠ checks the classical models of Π .

Thus, to decide the satisfiability of a program Π it is enough to find a path

leading from node ∅ to a terminal node. If it is Failstate, then Π has no classical

models. Otherwise, Π has classical models. For instance, let Π1 be

← not a, not b

← a, not c.

Figure 3 presents two paths in DPΠ1
from the node ∅ to the node Ok(a∆ c b∆).

Every edge is annotated on the left by the name of the transition rule that gives

rise to this edge in DPΠ1
. The node Ok(a∆ c b∆) is terminal. Thus, Proposition 1

asserts that Π1 is satisfiable and {a, c, b} is a classical model of Π1.

A path in the graph DPΠ is a description of a process of search for a classical



8 R. Brochenin, Y. Lierler and M. Maratea

Initial state : ∅
Decide =⇒ a∆

Unit =⇒ a∆ c
Decide =⇒ a∆ c b∆

Success =⇒ Ok(a∆ c b∆)

Initial state : ∅
Decide =⇒ a∆

Decide =⇒ a∆ ¬c∆

Unit =⇒ a∆ ¬c∆ c
Backtrack =⇒ a∆ c
Decide =⇒ a∆ c b∆

Success =⇒ Ok(a∆ c b∆)

Fig. 3. Examples of paths in DP{←not a, not b; ←a, not c}.

model of a program Π . The process is captured via applications of transition rules.

Therefore, we can characterize the algorithm of a solver that utilizes the transition

rules of DPΠ by describing a strategy for choosing a path. A strategy can be based

on assigning priorities to transition rules of DPΠ so that a solver never applies a

rule in a node if a rule with higher priority is applicable to the same node. The dpll

procedure is captured by the priorities ordered as we stated rules in Figure 2. For

instance, transition rule Conclude has the highest priority. In Figure 3, the path

on the left complies with the dpll priorities: Thus, it corresponds to an execution

of the dpll procedure. The path on the right does not: it uses Decide when Unit

is applicable. The proof of Proposition 1 follows the lines of the proof of Theorem

2.13 in Nieuwenhuis et al. (2006)2.

Abstract Answer Set Solver for Non-disjunctive Programs. Lierler (2011) illustrated
that extending DPΠ by a transition rule

Unfounded : L =⇒ L ¬a if


¬a does not occur in L and
L is consistent and
there is a set X of atoms containing a such that
X is unfounded on L w.r.t. Π

captures a backtrack-search procedure for finding answer sets of non-disjunctive

programs. Many answer set solvers for such programs can be seen as extensions of

this procedure (Lierler and Truszczynski 2011).

3 A Two-Layer Abstract Solver

The problem of deciding whether a disjunctive program has a stable model is ΣP
2 -

complete (Eiter and Gottlob 1993). This translates into the following: (i) there is an

exponential number of possible candidate models, and (ii) the problem of deciding

whether a candidate model is an answer set of a disjunctive logic program is co-

NP-complete. The latter condition differentiates algorithms of answer set solvers for

disjunctive programs from the procedures for non-disjunctive programs. Indeed, the

problem of deciding whether a candidate model is an answer set of a non-disjunctive

program is tractable.

2 This work defines a different dpll graph, avoiding the reference to the transition rule Success.
The presence of this rule in this presentation is important for the generalizations of the dpll
graph we introduce in the sequel.
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A common architecture of a disjunctive answer set solver is composed of two

layers corresponding to the two above conditions: a generate layer and a test layer,

each typically based on dpll-like procedures. In particular:

• The generate layer is used to obtain a set of candidates that are potentially

stable models.

• The test layer is used to verify whether a candidate (produced by the generate

layer) is a stable model of the given program.

We now proceed to present a graph DP 2
g,t(Π ) that captures such two-layer archi-

tecture. It is based on instances of the dpll procedure for both its generating task

and its testing task. We then illustrate how the DP 2
g,t(Π ) transition system can be

used to capture the disjunctive answer set solver cmodels in its basic form.

3.1 A Two-Layer Abstract Solver via dpll

We start by extending the notion of a basic state to accommodate for generate and

test layers. We call symbols L and R labels. A state relative to sets X and X ′ of

atoms is either

1. a pair (L,R)s, where L and R are records relative to X and X ′, respectively,

and s is a label (either symbol L or R),

2. Ok(L), where L is a record relative to X, or

3. the distinguished state Failstate.

We say that a set M of literals covers a program Π if atoms(Π ) ⊆ atoms(M). We

say that a function g from a program to another program is a generating (program)

function if for any program Π , atoms(Π ) ⊆ atoms(g(Π )). We call a function from

a program Π and a consistent set M of literals covering Π to a non-disjunctive

program Π ′ a witness (program) function. Intuitively, a program Π ′ resulting from

a witness function is a witness (program) with respect to Π and M . For a program Π

and a witness function t, by atoms(t,Π , X) we denote the union of atoms(t(Π , L))

for all possible consistent and complete sets L of literals over X.

We are now ready to define a graph DP 2
g,t(Π ) for a generating function g, a

witness function t and a program Π . The set of nodes of DP 2
g,t(Π ) consists of

the states relative to sets atoms(g(Π )) and atoms(t,Π , atoms(g(Π ))). The state

(∅, ∅)L is called initial. The edges of the graph DP 2
g,t(Π ) are specified by the tran-

sition rules presented in Figure 4. The graph DP 2
g,t(Π ) can be used for deciding

whether a program g(Π ) has a classical model M such that the witness t(Π ,M) is

unsatisfiable.

Proposition 2

For any generating function g, any witness function t and any program Π , the graph

DP 2
g,t(Π ) checks the classical models M of g(Π ) such that t(Π ,M) is unsatisfiable.
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Left-rules

ConcludeL (L, ∅)L =⇒ Failstate if

{
L is inconsistent and
L contains no decision literal

BacktrackL (Ll∆L′, ∅)L =⇒ (Ll, ∅)L if

{
Ll∆L′ is inconsistent and
L′ contains no decision literal

UnitL (L, ∅)L =⇒ (Ll, ∅)L if


l is a literal over atoms(g(Π )) and
l does not occur in L and
a rule in g(Π ) is equivalent to C ∨ l and
all the literals of C occur in L

DecideL (L, ∅)L =⇒ (Ll∆, ∅)L if


L is consistent and
l is a literal over atoms(g(Π )) and

neither l nor l occur in L

Crossing-rule LR
CrossLR (L, ∅)L =⇒ (L, ∅)R if

{
no left-rule applies

Right-rules

ConcludeR (L,R)R =⇒ Ok(L) if

{
R is inconsistent and
R contains no decision literal

BacktrackR (L,Rl∆R′)R =⇒ (L,Rl)R if

{
Rl∆R′ is inconsistent and
R′ contains no decision literal

UnitR (L,R)R =⇒ (L,Rl)R if


l is a literal over atoms(t(Π , L)) and
l does not occur in R and
a rule in t(Π , L) is equivalent to C ∨ l and
all the literals of C occur in L

DecideR (L,R)R =⇒ (L,Rl∆)R if


R is consistent and
l is a literal over atoms(t(Π , L)) and

neither l nor l occur in R

Crossing-rules RL

ConcludeRL (L,R)R =⇒ Failstate if

{
no right-rule applies and
L contains no decision literal

BacktrackRL (Ll∆L′, R)R =⇒ (Ll, ∅)L if

{
no right-rule applies and
L′ contains no decision literal

Fig. 4. The transition rules of the graph DP 2
g,t(Π ).

Informal Account of the Two-Layer Abstract Solver. Each of the rules of the graph

DP 2
g,t(Π ) is placed into one of the three groups Left, Right, and Crossing. The left-

rules of DP 2
g,t(Π ) capture the generate layer that applies the dpll procedure to the

program g(Π ) produced by the generating function. The right-rules of DP 2
g,t(Π )

capture the test layer that applies the dpll procedure to the computed witness

program. The label L (resp. R) suggests that currently the computation is within

the generate (resp. test) layer. The left-hand-side L (resp. right-hand-side R) of the

state (L,R)L records the computation state due to the generate (resp. test) layer.

The crossing rules form a bridge between the two layers.

It turns out that the left-rules no longer apply to a state of the form (L,R)L
only when L is a classical model of g(Π ). Thus, when a classical model L of g(Π )
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is found, then the CrossLR is used and a witness program with respect to L is

computed. If no classical model is found for the witness program, then ConcludeR
rule applies, which brings us to a terminal state Ok(L), suggesting that L repre-

sents a solution to a given search problem. It turns out that no right-rules applies

in a state of the form (L,R)R only when R is a classical model for the witness pro-

gram. Thus, the set L of literals is not such that t(Π ,M) is unsatisfiable and the

dpll procedure of the generate layer, embodied by the left-rules, proceeds with the

search, after backtracking through BacktrackRL. In the case when BacktrackRL
cannot be applied, it follows that no other candidate can be found by the generate

layer, so the transition ConcludeRL leading to Failstate is the only available one

from such a state.

3.2 Abstract basic cmodels

We now relate the graph DP 2
g,t(Π ) to the procedure dp-assat-proc from Lierler

(2005). This procedure forms the basis of the answer set solver cmodels. Yet, it

does not account for backjumping and learning techniques, implemented in cmod-

els.

Given a disjunctive program Π , the answer set solver cmodels starts its com-

putation by computing a CNF formula gC(Π ) that corresponds to the clausified

program completion of Π . The dpll procedure is then applied to gC(Π ). The test

layer of the cmodels computation relies on the programs produced by a witness

program function called tC that intuitively tests minimality of found models of

completion.

To be complete in our presentation, we now review the details of gC and tC

functions (Lierler 2010). To construct gC(Π ), cmodels introduces an auxiliary

atom αB for every body B occurring in Π . The atom αB is an explicit definition

for B, it is true if and only if B is true. Also every disjunctive rule gives rise

to as many auxiliary variables as there are atoms in the head of the rule: for a

disjunctive rule A← B and every atom a ∈ A, an auxiliary atom αa,B is equivalent

to a conjunction B ∧ A′, where A′ is (A \ {a})∨. Formulas (3) and (4) present the

definitions of gC and tC for a program Π. The first four lines of the definition of the

CNF formula gC(Π ) concern clausification of the introduced explicit definitions,

namely αB and αa,B . The last two lines encode clausified completion with the use

of αB and αa,B .

gC(Π ) = {αB ∨B | B ∈ Bodies(Π )}
{¬αB ∨ a | B ∈ Bodies(Π ), a ∈ B}
{αa,B ∨ ¬αB ∨A | A ∨ a← B ∈ Π }
{¬αa,B ∨ b | A ∨ a← B ∈ Π , b ∈ A ∪ {αB}}
{¬αB ∨A | A← B ∈ Π }
{¬a

∨
a←B∈Π

αB

∨
A∨a←B∈Π

αa,B}

(3)
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tC(Π ,M) = {M+
|atoms(Π )

∨
}∪

{¬a | ¬a ∈M|atoms(Π )}∪
{B ∨A | A← B ∈ Π M+

, B ⊆M},
(4)

Intuitively, cmodels uses the program gC(Π ) as an approximation of Π during

the generate-layer computation. Indeed, any stable model of Π is also a classical

model of gC(Π ). The converse does not always hold. Thus, classical models of

gC(Π ) must be checked. For a classical model M of gC(Π ), a program produced by

tC(Π ,M) has no classical models iff M is a stable model of Π . In fact, any model N

of tC(Π ,M) is such that it satisfies the reduct Π M+

, while N+ ⊂ M+
|atoms(Π ). In

such case, M+
|atoms(Π ) is not an answer set of Π by definition and, consequently, M

is not a stable model of Π.

By DP 2
Π we denote the graph DP 2

gC ,tC (Π ). Proposition 3 below illustrates that

the graph DP 2
Π can be used for deciding whether a given program Π has a stable

model, similarly as the graph DPΠ can be used for deciding whether Π has a

classical model.

Proposition 3

For any program Π , the graph DP 2
Π checks the stable models of Π .

The graph DP 2
Π captures the search procedure of dp-assat-proc of cmodels.

The dp-assat-proc algorithm follows the priorities on its transition rules as they

are ordered in Figure 4. We often use this convention when describing other proce-

dures in the sequel.

4 Graph Templates

The differences in design choices of disjunctive answer set solvers obscure the under-

standing of their similarities. In Brochenin et al. (2014), transition systems exem-

plified by the graph DP 2
Π were used to capture several disjunctive solvers, namely,

cmodels, gnt and dlv implementing backtracking. The transitions systems made

the similarities that these solvers share explicit. For example, all solvers are based

on a two-layer approach in the spirit of the dp-assat-proc algorithm. In this work,

we make an additional move towards a unifying framework for capturing two-layer

methods. We introduce a graph template that we then use to encompass disjunctive

solvers cmodels, gnt and dlv.

4.1 A Single Layer Graph Template

In the next section we will define a graph template suitable for capturing two-

layer computation of disjunctive answer set solvers. As a step in this direction,

we describe here a simpler graph template that can be used to capture the dpll

procedure by encapsulating the dpll graph. We also show that this template can

encapsulate a graph capturing the computation underlying the algorithm of answer

set solver smodels for non-disjunctive programs.
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l ∈ UnitPropagate(Π , L)

iff

 l does not occur in L and
a rule in Π that is equivalent to C ∨ l and
all the literals of C occur in L

¬a ∈ AllRulesCancelled(Π , L)

iff

{
¬a does not occur in L and
there is no rule in Π supporting a with respect to L

l ∈ BackchainTrue(Π , L)

iff


l does not occur in L and
there is a rule A ∨ a← B in Π

so that (i) a ∈ L, and (ii) either l ∈ A or l ∈ B and,
(iii) no other rule in Π is supporting a with respect to L

¬a ∈ Unfounded(Π , L)

iff


¬a does not occur in L and
L is consistent and
there is a set X of atoms containing a such that
X is unfounded on L with respect to Π

Fig. 5. Propagator conditions.

Template. A function from a program Π and a set of literals over atoms(Π ) to a set

of literals over atoms(Π ) is called a propagator condition or, shortly, p-condition.

Figure 5 presents four p-conditions, namely, UnitPropagate, AllRulesCancelled,

BackchainTrue, and Unfounded . For a set P of p-conditions, a program Π and

a set M of literals, by P(Π ,M) we denote the set of literals
⋃

p∈P p(Π ,M). Intu-

itively, if each image through a p-condition is a set of possible outcomes, this set

represents the union of the possible outcomes through P.

Definition 1

Given a a program Π and a set P of p-conditions, a dpll graph template DPTP,Π
is a graph of which nodes are the basic states relative to atoms(Π ) and edges are

specified by the transition rules Conclude, Backtrack, Decide, Success presented

in Figure 2 and the transition rule

Propagate L =⇒ Ll if l ∈ P(Π , L). (5)

For instance, the instantiation DPT{UnitPropagate},Π of the dpll graph tem-

plate results in the dpll graph DPΠ . Indeed, by definition these graphs share

the same nodes as well as their rules Conclude, Backtrack, Decide, and Success

coincide. Then, one can see that l ∈ UnitPropagate(Π , L) if and only if the tran-

sition rule Unit in DPΠ is applicable in L and supports the transition to a state

Ll, which shows that the Unit rule and the Propagate rule coincide when P =

{UnitPropagate}.

Instantiation. We call types the elements of the set T = {cla, sup, sta}. In the

following, by cla-model, sup-model and sta-model we denote classical, supported,

and stable models, respectively. We also use letter w to denote a variable over set T

of types. We say that a set P of p-conditions is w-sound if for any program Π , for
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any set M of literals, and for any w-model M1 of Π such that M ⊆M1, it also holds

that P(Π ,M) ⊆M1. Note that any cla-sound set of p-conditions is sup-sound, and

any sup-sound set of p-conditions is sta-sound. We say that a set P of p-conditions

is w-complete when for any program Π and any consistent and complete set M of

literals over atoms(Π ), set M is a w-model of Π if and only if P(Π ,M) = ∅. For

a type w, we say that a set P of p-conditions is w-enforcing if P is both w-sound

and w-complete.

Next theorem summarizes properties of several sets of p-conditions:

up = {UnitPropagate}
sd = {UnitPropagate, AllRulesCancelled,BackchainTrue}
sm = {UnitPropagate, AllRulesCancelled,BackchainTrue,Unfounded}

Theorem 2

The following statements hold:

1. The set up is cla-enforcing;

2. All the subsets of sd that contain {UnitPropagate, AllRulesCancelled} are

sup-enforcing; and

3. All the subsets of sm that contain {UnitPropagate,Unfounded} are sta–

enforcing.

We are now ready to state the main result of this section.

Theorem 3

For any program Π , any type w, and any w-enforcing set of p-conditions P, the

graph DPTP,Π checks the w-models of Π .

Theorems 2 and 3 give rise to families of valid solvers for deciding where classical,

supported, or stable models exist for a program. For instance, for a non-disjunctive

program Π , the graph DPTsm,Π coincides with the graph smΠ (Lierler 2011) that

captures computation of answer set solver smodels (Simons et al. 2002). The graph

DPTsd,Π coincides with the graph atleastΠ (Lierler 2011) that provides a proce-

dure for deciding whether a non-disjunctive program has supported models. For a

disjunctive program Π the same single layer graph DPTsm,Π forms a procedure for

deciding whether Π has a stable model. Note, however, that generally the problem

of deciding whether l ∈ Unfounded(Π , L) is np-complete for the case when Π is

disjunctive.

4.2 A Two-Layer Graph Template

We extend here the approach of Section 4.1 to capture two-layer methodology of

disjunctive solvers.

Definition 2

Given a program Π , sets PL and PR of p-conditions, a generating function g, and

a witness function t, a two-layer template graph STTPL,g
PR,t (Π ) is a graph defined as

follows:
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PropagateL (L, ∅)L =⇒ (Ll, ∅)L if l ∈ PL(g(Π ), L)

PropagateR (L,R)R =⇒ (L,Rl)R if l ∈ PR(t(Π , L), R)

Fig. 6. Transition rules of the graph template STTPL,g
PR,t (Π ).

• The set of nodes is, as in the previous two-layer graphs, the set of states relative to

atoms(g(Π )) and atoms(t,Π , atoms(g(Π ))); and

• The transition rules are the rules presented in Figure 4 except the rules UnitL and

UnitR, that are replaced by the rules PropagateL and PropagateR presented in

Figure 6.

Description of the Template. We call the state (∅, ∅)L initial. Note how the rules

PropagateL and PropagateR in STTPL,g
PR,t (Π ) refer to the parameters PL, PR, g

and t of the graph template. Varying these parameters will allow us to specify

transition systems that capture different disjunctive answer set solvers. Intuitively,

the parameters PL and PR are sets of p-conditions defining a propagation rule on

generate and test side of computation, respectively.

The instantiation STTup,gC

up,tC
(Π ) of the two-layer graph template results in DP 2

Π .

Indeed, the graphs share the same nodes. Also their rules ConcludeL, ConcludeR,

DecideL, DecideR, BacktrackL, BacktrackR and ConcludeRL coincide. It is easy

to see that a literal l is in up(gC(Π ), L) if and only if the transition rule UnitL in

DP 2
Π is applicable in (L, ∅)L and supports the transition to a state (Ll, ∅)L. Thus,

the transition rule PropagateL supports the transition from (L, ∅)L to (Ll, ∅)L
if and only if the transition rule UnitL supports the same transition. A similar

statement holds for the case of PropagateR and UnitR.

Recall that in Section 3.2 we showed that cmodels implementing backtracking

can be defined using the graph DP 2
Π . The fact that instantiation STTup,gC

up,tC
(Π ) co-

incides with DP 2
Π illustrates that the introduced template is sufficient for capturing

existing solvers. Next section demonstrates that the proposed template is suitable

for capturing gnt and dlv.

Instantiation: Approximating and Ensuring Pairs. In the definition of the two-layer

template graph STTPL,g
PR,t (Π ) we pose no restrictions on its four key parameters:

sets PL, PR of p-conditions, and generating and witness functions g, t. In practice,

when this template is utilized to model, characterize, and elicit disjunctive solvers

these four parameters exhibit specific properties. We now introduce terminology

that allows us to specify essential properties of these parameters that will translate

into correctness of solvers captured by properly instantiated template. On the one

hand, we introduce the conditions on generating and witness functions under which

we call these functions ”approximating“ and ”ensuring“, respectively. On the other

hand, we couple these conditions with restrictions on sets of p-conditions so that

we can speak of (i) approximating-pair (Pg, g) for a set Pg of p-conditions and a

generating function g, and (ii) ensuring-pair (Pt, t) for a set Pt of p-conditions and



16 R. Brochenin, Y. Lierler and M. Maratea

a witness function t. For such pairs, the template instantiation STT
Pg,g
Pt,t

(Π ) results

in a graph that checks stable models of Π . As a result, when we characterize such

solvers as gnt and dlv by means of the two-layer template we focus on (i) specifying

their generating and witness function as well as their sets of p-conditions, and

(ii) illustrating that they form proper approximating and ensuring pairs. This also

brings us to the realization that an inception of a novel solver can be triggered by

a creation of a novel approximation and ensuring pairs or their combinations. We

now make these ideas precise.

For types w and w1, we say that a generating function g is w1-approximating

with respect to type w if for any program Π :

1. For any stable model L of Π there is a w1-model L1 of g(Π ) such that

L = L1|atoms(Π ); and

2. For any w1-model M of g(Π ), M|atoms(Π ) is a w-model of Π .

Consider the generating function cnfcomp(Π ) that returns a CNF formula, which

stands for the completion comp(Π ) converted to CNF using straightforward equiv-

alent transformations. In other words, cnfcomp(Π ) consists of clauses of two kinds

1. the rules A← B of the program written as clauses A ∨B, and

2. formulas of cnfcomp(Π ) from (2) converted to CNF using the distributivity

of disjunction over conjunction.3

The function cnfcomp is cla-approximating with respect to sup. Indeed,

1. any stable model of a program Π is also a cla-model of cnfcomp(Π ), and

2. any cla-model of cnfcomp(Π ) is a sup-model of Π .

Since any supported model is also a classical model, the cnfcomp function is also

cla-approximating with respect to cla. Note that when a generating function g

is w1-approximating with respect to w, then enumerating all w1-models of g(Π )

results in enumerating some w-models of Π modulo a restriction to atoms(Π ).

For types w and w1, and a witness function t, we say that t is w1-ensuring with

respect to w when for any set M of literals covering Π such that M|atoms(Π ) is

w-model of Π , M|atoms(Π ) is a stable model of Π if and only if t(Π ,M) results in

a program that has no w1-model.

For instance, the witness function tC is cla-ensuring with respect to cla. Since

any sup-model is also a cla-model, the function tC is also cla-ensuring with respect

to sup. It is easy to see that when a witness function t is w1-ensuring with respect

to w, then given any w-model L of a program Π we may use the function t to test

that L is also a stable model of Π . Indeed, an application of t resulting in a program

that has no w1-models translates into the statement that L is a stable model of Π .

These newly defined concepts of approximating and ensuring functions provide

the following characterization for the set of stable models of a program Π .

3 It is essential that repetitions are not removed in the process of clausification. For instance,
cnfcomp(a← not a) = (a ∨ a) ∧ (¬a ∨ ¬a).
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Proposition 4

For any types w, w1 and w2, generating function g that is w1-approximating with

respect to w, witness function t that is w2-ensuring with respect to w, and pro-

gram Π , the set of all stable models of Π is

{L|atoms(Π ) | L is a w1-model of g(Π ) and t(Π , L) has no w2-models}.

We now introduce the notion of ensuring and approximating pairs that permit

an operational use of generating and witness functions, by matching them with a

relevant set of propagators. We call a pair (P, g) of a set of p-conditions and a

generating function an approximating-pair with respect to w if for some type w1,

the set P is w1-enforcing and the function g is w1-approximating with respect to w.

For example, the pair (up, cnfcomp) is an approximating-pair with respect to sup

as well as to cla. The (up, gC) is also an approximating-pair with respect to sup as

well as to cla.

We call a pair (P, t) of a set of p-conditions and a witness function an ensuring-

pair with respect to w if for some type w1, the set P is w1-enforcing and the function

t is w1-ensuring with respect to w. For example, the pair (up, tC) is an ensuring-pair

with respect to any defined type.

We are now ready to state the main result of this section.

Theorem 4

For any program Π , any type w, any (Pg, g) approximating-pair with respect to w,

and any (Pt, t) ensuring-pair with respect to w, the graph STT
Pg,g
Pt,t

(Π ) checks the

stable models of Π .

Theorem 4 illustrates how the template STT
Pg,g
Pt,t

(Π ) can serve as a framework for

defining transitions systems that result in correct algorithms for deciding whether

a program Π has a stable model. The facts that (up, gC) is an approximating-pair

with respect to cla and that (up, tC) is an ensuring-pair with respect to cla, together

with Theorem 4, subsume the result of Proposition 3.

We now state propositions that capture interesting properties about states of the

graph STT
Pg,g
Pt,t

(Π ). The former proposition concerns states with the label L, the

latter concerns states with the label R.

Proposition 5

For any type w, generating function g, witness function t, w-enforcing set of p-

conditions Pg, set of p-conditions Pt, and program Π , if no left-rule is applicable in

some state (l1. · · · .lk1
, r1. · · · .rk2

)L in STT
Pg,g
Pt,t

(Π ) reachable from the initial state,

then l1. · · · .lk1 is a w-model of g(Π ).

Proposition 6

For any types w1 and w2, generating function g witness function t, w1-enforcing

set of p-conditions Pg, w2-enforcing set of p-conditions Pt, program Π , and a state

(l1. · · · .lk1
, r1. · · · .rk2

)R in STT
Pg,g
Pt,t

(Π ) reachable from the initial state, the follow-

ing conditions hold:

(a) t(Π , l1. · · · .lk1
) is defined,
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(b) r1. · · · .rk2
is a set of literals over t(Π , L),

(c) l1. · · · .lk1 is a w1-model of g(Π ), and

(d) If no right-rule is applicable to (l1. · · · .lk1
, r1. · · · .rk2

)R then r1. · · · .rk2
is a

w2-model of t(Π , l1. · · · .lk1).

5 Applications of the Template

Section 3.2 illustrates how cmodels implementing backtracking can be defined

using the graph DP 2
Π , while the previous section states that the instantiation

STTup,gC

up,tC
(Π ) of the two-layer graph template results in DP 2

Π . Thus, this tem-

plate is suitable for capturing computations of cmodels. In this section, we show

how the template also captures the solvers gnt and dlv without backjumping.

Then, we discuss how the framework facilitates the design of new abstract solvers

and their comparison, by means of inspecting the structures of the related graphs.

Abstract gnt. We now show how the procedure underlying disjunctive solver gnt

can be captured by the two-layer template. Unlike solver cmodels that uses the

dpll procedure for generating and testing, system gnt uses the smodels procedure

for respective tasks. Recall that the smodels procedure finds stable models for non-

disjunctive logic programs, while the dpll procedure finds classical models. The

graph smΠ (Section 4.1) captures the computation underlying smodels just as the

graph DPΠ captures the computation underlying dpll. It forms a basis for devising

the transition system suitable to describe gnt. The graph describing the general

structure of gnt is obtained from the graph template STT sm,g
sm,t (Π ) that rely on the

set sm of p-contitions.4

Janhunen et al. (2006) define the generating function gG and the witness func-

tion tG used in gnt. We present these definitions in (6) and (7).5 For a disjunctive

program Π , by ΠN we denote the set of non-disjunctive rules of Π , by ΠD we

denote the set of disjunctive rules Π \ΠN . For each atom a in atoms(Π ) let ar and

as be new atoms.

gG(Π ) = {a← B,not ar | A ∨ a← B ∈ ΠD}∪
{ar ← not a | A ∨ a← B ∈ ΠD}∪
{← A,B | A← B ∈ ΠD}∪
ΠN∪
{as ← A \ {a}, B | A ∨ a← B ∈ ΠD}∪
{← a, not as | a ∨A← B ∈ ΠD}

(6)

4 The graph template STT sm,g
sm,t (Π ) corresponds to the graph SM2

g(Π ),t
defined in (Brochenin

et al. 2014).
5 The presented functions gG and tG capture the essence of functions Gen and Test defined by

Janhunen et al., but they are not identical. Our language of disjunctive programs includes rules
with empty heads. This allows us a more concise description.
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gG(Π ) = a← c
b← c
c← a, b
a← not ar

b← not br

ar ← not a
br ← not b
← not a, not b
as ← c
as ← not b
bs ← c
bs ← not a
← a, not as

← b, not bs

tG(Π , L) = a← not ar

ar ← not a
← not a, not b
← a, not b, not c

Initial state : (∅, ∅)L
DecideL : ((¬ar)∆, ∅)L
Propagate2

L : ((¬ar)∆ a as, ∅)L
(with UnitPropagate)

DecideL : ((¬ar)∆ a as ¬b∆, ∅)L
PropagateL : ((¬ar)∆ a as ¬b∆ br, ∅)L

(with UnitPropagate)
PropagateL : ((¬ar)∆ a as ¬b∆ br ¬c, ∅)L

(with Unfounded)
DecideL : ((¬ar)∆ a as ¬b∆ br ¬c bs, ∅)L
CrossLR : ((¬ar)∆ a as ¬b∆ br ¬c, ∅)R

Let L = (¬ar)∆ a as ¬b∆ br ¬c

Current state : (L, ∅)R
DecideR : (L,¬a∆)R
PropagateR : (L,¬a∆ b)R

(with UnitPropagate)
PropagateR : (L,¬a∆ b ¬b)R

(with AllRulesCancelled)
BacktrackR : (L, a)R
PropagateR : (L, a ¬ar)R

(with BackchainTrue)
Propagate2

R : (L, a ¬ar ¬b ¬c)R
(with AllRulesCancelled)

PropagateR : (L, a ¬ar ¬b ¬c c)R
(with UnitPropagate)

ConcludeR : Ok(L)

Fig. 7. Example of path through the graph SM2
{a←c;b←c;c←a,b;a∨b←}.

tG(Π ,M) = {a← B,not ar | A ∨ a← B ∈ Π M
D , a ∈M,B ⊆M}∪

{ar ← not a | A ∨ a← B ∈ Π }∪
{← A,B | A← B ∈ Π M

D , B ⊆M}∪
{a← B | a← B ∈ Π M

N , a ∈M,B ⊆M}∪
{←M|atoms(Π )}

(7)

By SM2
Π we denote the graph STT sm,gG

sm,tG
(Π ). The graph SM2

Π captures the gnt

procedure by Janhunen et al. (2006) in a similar way as the graph DP 2
Π captures

the cmodels procedure of dp-assat-proc in Section 3.2. Figure 7 presents an

example of a path in a graph SM2
{a←c;b←c;c←a,b;a∨b←}. From the formal results by

Janhunen et al. (2006) it immediately follows that gG is sta-approximating with

respect to cla and tG is sta-ensuring with respect to cla. The pair (sm, gG) is

an approximating-pair with respect to cla, while (sm, tG) is an ensuring-pair with

respect to cla. The following result immediately follows from Theorem 4.6

Corollary 1

For any Π the graph SM2
Π checks the stable models of Π .

6 Corollary 1 corresponds to Theorem 5 in (Brochenin et al. 2014).
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gD(Π ) = a← c
b← c
c← a, b
a ∨ b←

tD(Π , L) = ¬a ∨ c
¬b ∨ c
¬c ∨ a ∨ b
¬a ∨ ¬b
c ∨ a ∨ b

tD(Π , L′) = ¬a
¬b
¬c ∨ a
¬a ∨ ¬b
a

Initial state : (∅, ∅)L
DecideL : (c∆, ∅)L
Propagate2

L : (c∆ a b, ∅)L
(with UnitPropagate)

CrossLR : (c∆ a b, ∅)R

Let L = c∆ a b

Current state : (L, ∅)R
DecideR : (L, c∆)R
Propagate2

R : (L, c∆ a b)R
BacktrackRL : (¬c, ∅)L
DecideL : (¬c a∆, ∅)L
PropagateL : (¬c a∆ ¬b, ∅)L

(with UnitPropagate)
CrossLR : (¬c a∆ ¬b, ∅)R

Let L′ = ¬c a∆ ¬b

Current state : (L′, ∅)R
Propagate2

R : (L′,¬a a)R
ConcludeR : Ok(L′)

Fig. 8. Example of path through the graph STT sd,gD

up,tD
({a← c; b← c; c← a, b; a ∨ b←}).

Abstract dlv without Backjumping. This section introduces graphs that capture the

answer set solver dlv without backjumping. The generate layer, i.e., the left-rule

layer, is reminiscent to the smodels algorithm except it does not use Unfounded .

The test layer applies the dpll procedure to a witness formula.

The graph templates STT sd,g
up,t (Π ) describes the general structure of dlv. The

generating function gD is the identity function as in (8), and the witness function

tD follows in (9).

gD(Π ) = Π (8)

tD(Π ,M) = {(B ∩M+)
∨ ∨A′∨ | A← B ∈ Π M+

, B ⊆M,A′ = A ∩M+}∪
{(M|atoms(Π ))

∨}
(9)

Following the results from Faber (2002) and Koch et al. (2003), the generating

function gD is sup-approximating with respect to cla while the witness function tD

is cla-ensuring with respect to cla. The pair (sd, gD) is an approximating-pair with

respect to cla, while (up, tD) is an ensuring-pair with respect to cla. The result

below immediately follows from Theorem 4.7

Corollary 2

For any Π the graph STT sd,gD

up,tD
(Π ) checks the stable models of Π .

7 Corollary 2 corresponds to Theorem 6 in (Brochenin et al. 2014).
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This corollary is an alternative proof of correctness for the dlv algorithm previously

stated by Faber (2002) and Koch et al. (2003) in terms of pseudo-code. Figure 8

presents an example of a path through one of the graph describing abstract dlv.

Designing new Graphs and Comparing Graphs. The two-layer graph template can

be conveniently used to define new abstract solvers. For instance, one may choose

to combine (up, gC) with (sm, tG) to obtain a solver captured by the graph tem-

plate STTup,gC

sm,tG
(Π ). Theorem 4 provides a proof of correctness for the procedure

summarized by this family of graphs. More generally, to obtain a new solver one can

combine any approximating-pair on the left side of the graphs with any ensuring-

pair on the right side with respect to the same type. For instance, for any pair

(P, t) that is ensuring with respect to cla, the family of graphs STTup,cnfcomp
P,t (Π )

captures a correct procedure for a disjunctive answer set solver.

In the following, we illustrate how abstract solvers can serve also as a convenient

tool for comparing search procedures from an abstract point of view, by means

of comparison to the related graphs. In this respect we now state the result that

illustrates a strong relation between cmodels and dlv. Indeed, their generate layer:

Theorem 5

For any (P, t) ensuring-pair with respect to cla, and any program Π , the graphs

STTup,cnfcomp
P,t (Π ) and STT sd,gD

P,t (Π ) are identical graphs.

6 Proofs

6.1 Proof of Theorem 2

We start by stating several lemmas that will be instrumental in constructing argu-

ments for Theorem 2. Recall that up = {UnitPropagate}.

Lemma 1

The set up is cla-complete.

In other words, for any program Π and any complete and consistent set M of

literals over atoms(Π ), the set M is a cla-model of Π iff UnitPropagate(Π ,M) = ∅.

Proof

Left-to-right: Let M be a cla-model of Π . Our proof is by contradiction. Assume

that UnitPropagate(Π ,M) 6= ∅. Take any literal l from this set. Then, the literal l

is such that it does not belong to M . Also, there is a rule in Π that is equivalent

to a clause C ∨ l so that all the literals of C occur in M . Since M is a cla-model

of Π , we conclude that l ∈M . We derive a contradiction.

Right-to-left: Let UnitPropagate(Π ,M) = ∅. By contradiction. Assume that M

is not a cla-model of Π . Then there is a rule in Π that is equivalent to a clause C∨ l
so that all the literals of C as well as l occur in M (indeed, M is a complete set of

literals over atoms(Π ) that does not satisfy some rule in Π ). Since M is consistent,

l 6∈M . It follows that l ∈ UnitPropagate(Π ,M). We derive a contradiction.
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Lemma 2

For any program Π , any atom a, and any sets M and M ′ of literals such that

M ⊆ M ′, if a rule in Π is not a supporting rule for a with respect to M then this

rule is also not a supporting rule for a with respect to M ′.

Proof

By contradiction. Assume that there is a rule A ∨ a ← B in Π such that it is not

a supporting rule for a with respect to M but it is a supporting rule for a with

respect to M ′. It follows that M ∩ (B ∪ A) 6= ∅, while M ′ ∩ (B ∪ A) = ∅. This

contradicts the fact that M ⊆M ′.

We now generalize Lemma 4 from Lierler (2008) to the case of disjunctive pro-

grams.

Lemma 3

For any unfounded set U on a consistent set L of literals w.r.t. a program Π and any

consistent and complete set M of literals over atoms(Π ), if L ⊆M and M ∩U 6= ∅,
then M is not a stable model of Π .

Proof

By contradiction. Assume that M is a stable model of Π . Then, M is a classic

model of Π also. By Theorem 1, M is such that there is no non-empty subset of

M+ such that it is an unfounded set on M w.r.t. Π . Since M ∩ U 6= ∅, it follows

that M ∩ U is not an unfounded set on M w.r.t. Π . It follows that for some rule

a ∨A← B ∈ Π such that a ∈M ∩ U all of the following conditions hold

1. M ∩B = ∅,
2. M ∩ U ∩B = ∅, and

3. (A \ (M ∩ U)) ∩M = ∅.

Since M ∩ B = ∅ and L ⊆ M it follows that L ∩ B = ∅. Since M ∩ B = ∅ and

the fact that M is consistent and complete set of literals over atoms(Π ), B+ ⊆M .

Consequently U ∩B+ = M ∩U ∩B+ = ∅. Since L ⊆M and (A\ (M ∩U))∩M = ∅,
it follows that (A \ U) ∩ L = ∅. Consequently, the set U is not an unfounded set

on L.

We are now ready to introduce the proof of Theorem 2.

Proof of Theorem 2

Statement 1. We have to show that the set up is cla-enforcing. Lemma 1 states that

the set up is cla-complete. Thus, we only ought to illustrate that up is cla-sound.

Let Π be any program, M be any set of literals, M ′ be any cla-model of Π such

that M ⊆ M ′. We have to show that up(Π ,M) ⊆ M ′. Let l be any literal in

up(Π ,M). We now show that l ∈ M ′. The p-condition UnitPropagate is the only

member of the set up. Thus, up(Π ,M) = UnitPropagate(Π ,M). It follows that

l ∈ UnitPropagate(Π ,M). By the conditions of UnitPropagate definition, there is

a rule in Π that is equivalent to a clause C ∨ l so that all the literals of C occur in
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M . Since M ⊆ M ′, it follows that all the literals of C occur in M ′. From the fact

that M ′ is cla-model of Π it follows that M ′ |= C ∨ l. Consequently, l ∈M ′.

Statement 2. We have to show that the subsets of sd containing {UnitPropagate,

AllRulesCancelled} are sup-enforcing. We first illustrate this property for the set

{UnitPropagate, AllRulesCancelled}. We call this set ua. We start by showing that

the set ua is sup-sound. Let Π be any program, M be any set of literals, M ′ be any

sup-model of Π such that M ⊆M ′. We have to illustrate that the set ua(Π ,M) is

a subset of M ′. Consider any literal l in the set ua(Π ,M). We now show that l is

also in M ′.

Case 1. l ∈ UnitPropagate(Π ,M). Since M ′ is a sup-model, M ′ is also a cla-

model. The rest of the argument follows the lines of proof in Statement 1, which

illustrates that up is cla-sound.

Case 2. l ∈ AllRulesCancelled(Π ,M). l has the form ¬a. By the conditions of

AllRulesCancelled definition, it follows that there is no rule in Π supporting a

with respect to M . By Lemma 2, we derive that there is no rule in Π supporting

a with respect to M ′. From the fact that M ′ is sup-model of Π it follows that

¬a ∈ M ′. (Indeed, a may not be a member of M ′, while M ′ is a complete set of

literals over atoms(Π ).)

Second, we show that the set ua is sup-complete. Let Π be any program, M be

any complete and consistent set of literals over atoms(Π ). We now show that M is

sup-model of Π iff ua(Π ,M) = ∅.
Left-to-right: Let M be a sup-model of Π . By contradiction. Assume that the

set ua(Π ,M) is not empty. Then there is a literal l in this set.

Case 1. l ∈ UnitPropagate(Π ,M). Since M is also cla-model of Π , by Lemma 1

we derive a contradiction.

Case 2. l ∈ AllRulesCancelled(Π ,M). l has the form ¬a. By the conditions of

AllRulesCancelled definition, it follows that (i) literal ¬a is such that it does not

belong to M , and (ii) there is no supporting rule in Π for a with respect to M . Since

M is a sup-model of Π , we conclude from (ii) that ¬a ∈M . This contradicts (i).

Right-to-left: Assume ua(Π ,M) = ∅. By contradiction. Assume that M is not a

sup-model of Π . Then either M is not a cla-model of Π or there is an atom a ∈M+

such that there is no supporting rule in Π for a with respect to M . In the former

case, when M is not a cla-model of Π , by Lemma 1 we derive a contradiction. In

the latter case, it follows that ¬a ∈ AllRulesCancelled(Π ,M) by the conditions of

the AllRulesCancelled definition. We derive a contradiction.

We now show that the set sd is sup-enforcing. We start by claiming that the

set sd is sup-sound. Let Π be any program, M be any set of literals, M ′ be any

sup-model of Π such that M ⊆ M ′. We have to illustrate that the set sd(Π ,M)

is a subset of M ′. Consider any literal l in the set sd(Π ,M). We show that l is

also in M ′. Given a proof that ua is sup-sound, it is only left to be proved that for

any literal l that is in BackchainTrue(Π ,M), it also holds that l ∈ M ′. Consider

literal l ∈ BackchainTrue(Π ,M). By the definition of BackchainTrue it follows

that there is a rule r = A ∨ a← B in Π so that (i) a ∈M , and (ii) either l ∈ A or

l ∈ B and, (iii) no other rule in Π is supporting a with respect to M . By Lemma 2
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and (iii), we derive that every rule other than r is such that it is not a supporting

rule for a with respect to M ′. By (i) and the fact that M ⊆M ′, a ∈M ′. Since M ′

is a sup-model of Π , it follows that M ∩ (B ∪ A) = ∅. By the fact that M ′ is a

consistent and complete set of literals over atoms(Π ) we conclude that B∪A ⊆M .

By (ii), l ∈M ′.

Statement 3. We have to show that the subsets of sm containing {UnitPropagate,

Unfounded} are sta-enforcing. We only illustrate this for the set {UnitPropagate,

Unfounded}. We call this set uu. The proof for other sets (i) relies on the fact that

any sta-model is also a cla and sup-model and (ii) follows the ideas presented in

the proof of Statement 2.

We start by showing that the set uu is sta-sound. Let Π be any program, M

be any set of literals, M ′ be any sta-model of Π such that M ⊆ M ′. We have to

illustrate that the set uu(Π ,M) is a subset of M ′. Consider any literal l in the set

uu(Π ,M). We now show that l is also in M ′.

Case 1. l ∈ UnitPropagate(Π ,M). Since M ′ is a sta-model, M ′ is also a cla-

model. The rest of the argument follows the lines of proof in Statement 1, which

illustrates that up is cla-sound.

Case 2. l ∈ Unfounded(Π ,M). Literal l has the form ¬a. By the conditions of

Unfounded definition, it follows that there is a set X containing a such that X is

unfounded with respect to Π . By Lemma 3 and the fact that M ′ is sta-model of

Π it follows that ¬a ∈M ′. (Indeed, consider a simple argument by contradiction.)

Second, we show that the set uu is sta-complete. Let Π be any program, M be

any complete and consistent set of literals over atoms(Π ). We now show that M is

sta-model of Π iff uu(Π ,M) = ∅.
Left-to-right: Let M be a sta-model of Π . By contradiction. Assume that the set

uu(Π ,M) is not empty. Then there is a literal l in this set.

Case 1. l ∈ UnitPropagate(Π ,M). Since M is also cla-model of Π , by Lemma 1

we derive a contradiction.

Case 2. l ∈ Unfounded(Π ,M). Literal l has the form ¬a. By the conditions of

Unfounded definition, it follows that (i) literal ¬a is such that it does not belong

to M , and (ii) there is a set X containing a such that X is unfounded with respect

to Π . Since M is a sta-model of Π , we conclude from (ii) that ¬a ∈ M . This

contradicts (i).

Right-to-left: Assume that uu(Π ,M) = ∅. By contradiction. Assume that M is

not a sta-model of Π . By Theorem 1, either M is not a cla-model of Π or there

is a non-empty subset of L+ that is an unfounded set on L with respect to Π .

In the former case, when M is not a cla-model of Π , by Lemma 1 we derive a

contradiction. In the latter case, it follows that there is some atom a in an existing

unfounded set so that ¬a ∈ Unfounded(Π ,M) by the conditions of the Unfounded

definition. We derive a contradiction.
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6.2 Proofs of Theorems 3, 4, Propositions 2, 4, 5, 6

We start by the proof of Theorem 4. We skip the proof of Theorem 3 as it relies on

the same proof techniques that proof of Theorem 4 exhibits. The proof of Theorem 4

relies on auxiliary lemmas as well as proofs of Propositions 4, 5, 6 that follow. We

conclude this section with the proof of Proposition 2.

Lemma 4

Let g be a generating function and t be a witness function.

Let Pg and Pt be sets of p-conditions.

Then for any Π , the graph STT
Pg,g
Pt,t

(Π ) is finite and acyclic.

Proof

Consider the states of the graph STT
Pg,g
Pt,t

(Π ). The string L of states of the form

(L,R)s or of the type Ok(L) is built over a set of atoms which is bounded by the

size of Π . Also, L does not allow repetitions. Thus, there is a finite number of

possible strings L in the states (L,R)s or Ok(L). It immediately follows that there

is a finite number of states Ok(L) in STT
Pg,g
Pt,t

(Π ).

Consider the right side of a state of the form (L,R)s. Since t(Π , L) has a finite

number of atoms and there is a finite number of possible L, the set of atoms over

which R is built is finite. Consequently, there is a finite number of possible R. We

conclude that there is a finite number of possible states (L,R)s. Thus the set of

states is finite in STT
Pg,g
Pt,t

(Π ).

For any string L of literals, by |L| we denote the length of this string. Any

string L of literals can be written L0l
∆
1 L1 . . . l

∆
k Lk, where (l∆i )1≤i≤k contains all

the decision literals of L. Let us call v(L) the sequence |L0|, |L1| . . . |Lk|. We then

write L ≤ L′ iff v(L) ≤lex v(L′) where ≤lex is the lexicographic order. Since the

length of the sequence v(L) is bounded by the finite number of possible decision

literals, this is a well-founded order. Finally, we say that (L,R)s ≤ (L′, R′)s′ iff

(L,R, s) ≤lex (L′, R′, s′) where ≤lex is the lexicographic order and L < R. This is

clearly well-founded as it is the lexicographic composition of well-founded orders.

If there is a transition from (L,R)s to (L′, R′)s′ then (L,R)s ≤ (L′, R′)s′ and

(L,R)s 6= (L′, R′)s′ . This can be checked simply for each of the rules. Since the order

is well-founded, there is no infinite path in the graph. Consequently, the graph is

acyclic.

Proof of Proposition 5

We first show that l1. · · · .lk1 is consistent. By contradiction. Assume that l1. · · · .lk1

is inconsistent. Then since ConcludeL is not applicable l1. · · · .lk1
contains at least

one decision literal. We now define i as l1. · · · .lk1 = l1. · · · .li−1.l
∆
i .li+1. · · · .lk1 where

l∆i is the rightmost decision literal. Since BacktrackL is not applicable l1. · · · .lk1

contains no decision literal. We derive a contradiction.

Since DecideL is not applicable and l1. · · · .lk1
is consistent, l1. · · · .lk1

assigns all

the atoms of atoms(g(Π )). As a consequence l1. · · · .lk1
is a consistent and complete

set of literals that covers atoms(g(Π )). Finally, PropagateL is not applicable. So
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Pg(Π , l1. · · · .lk1
) is the empty set. Since Pg is w-enforcing and hence w-complete,

l1. · · · .lk1 is a w-model of g(Π ).

Proof of Proposition 6

Statements (a− c) We prove these statements by induction on the length of a path

in the graph STT
Pg,g
Pt,t

(Π ) from the initial state. Since the statements trivially hold

in the initial state of the graph, we only have to prove that all transition rules of

STT
Pg,g
Pt,t

(Π ) preserve the properties.

Statement (c) trivially holds for all transitions but Crossing-rules RL. State-

ments (a) and (b) trivially hold for transitions due to Left rules, Crossing-rules RL,

ConcludeR, ConcludeRL.

Consider an edge due to one of the Right rules or Crossing-rules LR from state

S = (l01. · · · .l0k0
1
, r0

1. · · · .r0
k0
2
)s0 to state S′ = (l1. · · · .lk1 , r1. · · · .rk2)R so that the

statements (a) and (b) hold on S (an inductive hypothesis). For the Right rules

(excluding ConcludeR), the left side of the state remains unchanged. Thus, by

induction hypothesis (a) immediately follows. Similarly, it is easy to see from the

conditions of these rules that they also preserve property (b). We now illustrate

that the CrossLR preserves (a− c).

Case CrossLR: It follows that (i) s0 = L, (ii) l1. · · · .lk1
= l01. · · · .l0k0

1
, (iii) no

left rule applies to S, (iv) r1. · · · .rk1 = r0
1. · · · .r0

k0
1

= ∅. By Proposition 5, (i),

and (iii) we conclude that l01. · · · .l0k0
1

is a w1-model of g(Π ). By (ii), it follows that

l1. · · · .lk1
is also a w1-model of g(Π ). Thus, (c) holds. From the definition of g(Π ) it

follows that the set {l1. · · · .lk1} of literals covers Π. It follows that t(Π , l1. · · · .lk1)

is defined. Thus (a) holds. From (iv), (b) trivially follows as the right side of the

state is empty.

Statement (d) We first show that r1. · · · .rk2
is consistent. By contradiction.

Assume that r1. · · · .rk2 is inconsistent. Then since ConcludeR is not applicable,

r1. · · · .rk2
contains at least one decision literal. We now define i as r1. · · · .rk2

=

r1. · · · .ri−1.r
∆
i .ri+1. · · · .rk2

where r∆
i is the rightmost decision literal. Since the

rule BacktrackR is not applicable r1. · · · .rk2
contains no decision literal. We derive

a contradiction.

Since DecideR is not applicable and r1. · · · .rk2
is consistent, by (b) r1. · · · .rk2

assigns all the atoms of atoms(t(Π , l1. · · · .lk1
)). Thus, r1. · · · .rk2

is a consistent

and complete set of literals over atoms(t(Π , l1. · · · .lk1)). Finally, PropagateR is

not applicable. So Pt(t(Π , l1. · · · .lk1
), r1. · · · .rk2

) is the empty set. Since Pt is w2-

enforcing and hence w2-complete, r1. · · · .rk2 is a w2-model of t(Π , l1. · · · .lk1).

Lemma 5

Let w1 and w2 be some types in {cla, sup, sta}.
Let g be a generating function and t be a witness function.

Let Pg be a w1-enforcing set of p-conditions and Pt be a w2-enforcing set of

p-conditions.

Let Π be a program.
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Let (l1. · · · .lk1
, r1. · · · .rk2

)s be a state of STT
Pg,g
Pt,t

(Π ) reachable from the initial

state.

Then:

(a) any w2-model of t(Π , l1. · · · .lk1
) satisfies ri if it satisfies all decision literals

(rj)
∆ with j ≤ i.

(b) Any w1-model L of g(Π ) such that t(Π , L) has no w2-model satisfies li if it

satisfies all decision literals l∆j with j ≤ i.

Proof

We prove statements (a) and (b) by induction on the length of a path in the graph

STT
Pg,g
Pt,t

(Π ) from the initial state. Since the statements trivially hold in the initial

state of the graph, we only have to prove that all transition rules of STT
Pg,g
Pt,t

(Π )

preserve the properties.

Consider an edge from the state S = (l01. · · · .l0k0
1
, r0

1. · · · .r0
k0
2
)s0 to the state S′ =

(l1. · · · .lk1
, r1. · · · .rk2

)s so that the statements (a) and (b) hold on S (an inductive

hypothesis).

The statements (a) and (b) trivially hold for the case of transitions due to

ConcludeL, ConcludeR, ConcludeRL.

For the case of transition rules CrossLR, BacktrackR, DecideR, PropagateR
it holds that l1. · · · .lk1

= l01. · · · .l0k0
1
. So by the induction hypothesis, (b) triv-

ially holds on (l1. · · · .lk1
, r1. · · · .rk2

)s. For these rules, we are left to show that (a)

holds on (l1. · · · .lk1 , r1. · · · .rk2)s. Note that for the case of BacktrackR, DecideR,

PropagateR, by Proposition 6 (a) it follows that t(Π , l1. · · · .lk1
) is defined.

Case CrossLR: It follows that r1. · · · .rk1 = r0
1. · · · .r0

k0
1

= ∅. Consequently, (a)

holds as right side of the state is empty.

Case BacktrackR. In this case, there is an index i such that r0
1. · · · .r0

k0
2

=

r0
1. · · · .r0

i−1.(r
0
i )∆.r0

i+1. · · · .r0
k0
2

and r1. · · · .rk2−1 = r0
1. · · · .r0

i−1. Also, by the con-

ditions of BacktrackR, the string of literals r0
1. · · · .r0

k0
2

is inconsistent. Let M be a

w2-model of t(Π , l1. · · · .lk1). Let rj be a literal of r1. · · · .rk1 . Assume M satisfies

all decision literals (rj′)
∆ with j′ ≤ j. By the induction hypothesis, if j 6= k2 then

M satisfies rj . It remains to prove that this is also true when j = k2. Assume M

satisfies all the decision literals of r1. · · · .rk2
. They include all the decision literals

of r1. · · · .rk2−1. Then M satisfies all the literals of r1. · · · .rk2−1 by the induction

hypothesis. We now show that M also satisfies rk2 .

None of the literals r0
i+1 · · · r0

k0
2

is a decision literal. Additionally, r1. · · · .rk2
=

r0
1. · · · .r0

i−1.r
0
i . Since M satisfies all the literals of r1. · · · .rk2−1, it satisfies all the

literals of r0
1. · · · .r0

i−1. Since r0
1. · · · .r0

k0
2

is inconsistent, M cannot satisfy all of its

literals, so M does not satisfy at least one literal of r0
i · · · r0

k0
2
. By the contraposition

of the induction hypothesis (a), and since none of the literals r0
i+1 · · · r0

k0
2

is a decision

literal, one of the literals not satisfied by M has to be r0
i . So M must satisfy r0

i ,

that is rk2 .

Case DecideR. Obvious.
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Case PropagateR. Let M be a w2-model of t(Π , l1. · · · .lk1
). Assume M satis-

fies all the decision literals of r1. · · · .rk2 . Since for any propagator condition rk2

is not a decision literal, they are the decision literals of r1. · · · .rk2−1. So M sat-

isfies all the literals of r1. · · · .rk2−1 by the induction hypothesis. In other words

{r1. · · · .rk2−1} ⊆M . Proving that M satisfies rk2
will complete the proof. We are

given that Pt is w2-enforcing and hence w2-sound. By definition of w2-soundness

and the fact that {r1. · · · .rk2−1} ⊆M , it follows that Pt(Π , {r1. · · · .rk2−1}) ⊆M .

Since rk2
∈ Pt(Π , {r1. · · · .rk2−1}), also rk2

∈M . In other words, M satisfies rk2
.

We are left to illustrate that transition rulesBacktrackRL,BacktrackL,DecideL,

PropagateL preserve properties (a) and (b). Since all of these rules are such that the

right side of the resulting state is ∅, clearly (a) is preserved. We will only illustrate

that BacktrackRL preserves (b) as the remaining cases for (b) are similar to the

arguments constructed above for the respective right rules and property (a).

Case BacktrackRL. There is an index i such that l1. · · · .lk1−1 = r0
1. · · · .r0

i−1

and l01. · · · .l0k0
1

= l01. · · · .l0i−1.(l
0
i )∆.l0i+1. · · · .l0k0

1
. Let M be a w1-model of g(Π ) such

that t(Π ,M) has no w2-model. Assume that M satisfies all the decision literals

of l1. · · · .lk1 . Since lk1 is not a decision literal, they are the decision literals of

l1. · · · .lk1−1. So M satisfies all the literals of l1. · · · .lk1−1 by the induction hypoth-

esis. Showing that M satisfies lk1
will complete the proof.

Since the transition is justified by BacktrackRL, by Proposition 6 (c), l01. · · · .l0k0
1

is a w1-model of g(Π ). By Proposition 6 (d) and the fact that no right-rule applies,

r0
1. · · · .r0

k0
2

is a w2-model of t(Π , l1. · · · .lk1
). So t(Π , l1. · · · .lk1

) has a w2-model,

hence M does not satisfy all the literals of l01. · · · .l0k0
1
. Consequently, since M satisfies

all the literals of l1. · · · .lk1−1, at least one literal from (li
0)∆.l0i+1. · · · .l0k0

1
is not

satisfied by M , which by the contraposition of the induction hypothesis (b) proves

that l0i = lk1 is not satisfied by M . This means that M satisfies lk1 .

Lemma 6

Let w1 and w2 be some types in {cla, sup, sta}.
Let Pg be a w1-enforcing set of p-conditions. Let g be a generating function.

Let Pt be a w2-enforcing set of p-conditions. Let t be a witness function.

Let Π be a program. Then:

1. any terminal state of STT
Pg,g
Pt,t

(Π ) reachable from the initial state and other

than Failstate is Ok(L), with L being a w1-model of g(Π ) such that t(Π , L)

has no w2-model,

2. Failstate is reachable from the initial state iff g(Π ) has no w1-model L such

that t(Π , L) has no w2-model.

Proof

We first illustrate that any terminal state is either Failstate or of the form Ok(L)

for some L. By contradiction. Assume there is a terminal state of the form (L,R)s.

Case 1. s = L. Then either a left rule or CrossLR applies, so (L,R)s is not terminal.

We derive a contradiction. Case 2. s = R. Since ConcludeRL does not apply while
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no right-rule applies and no left-rule applies, L contains at least one decision literal.

Since BacktrackRL is not applicable, L contains no decision literal. We derive a

contradiction.

Statement 1. Let Ok(L) be a terminal state reachable from the initial state. As it

is different from the initial state there is a transition leading to it. This transition can

only be ConcludeR. Let us call (L,R)s a state from which a transition ConcludeR
leads to Ok(L). By the definition of ConcludeR, we know that: s = R, that R

is inconsistent and that R contains no decision literal. By Lemma 5 item (c), the

consistent set of literals obtained from L is a w1-model of g(Π ).

By Lemma 5 item (a), and as R contains no decision literal, any w2-model of

t(Π , L) satisfies all the literals of R. Since R is inconsistent, any w2-model of t(Π , L)

is inconsistent. So t(Π , L) has no w2-model.

We have just proved that L is a w1-model of g(Π ) such that t(Π , L) has no

w2-model.

Statement 2. Assume Failstate is not reachable from the initial state. Then,

since the graph is acyclic, there is a terminal state different from Failstate. By

Claim 1, this state is Ok(L), and L is a w1-model of g(Π ) such that t(Π , L) has no

w2-model.

Assume Failstate is reachable from the initial state. As it is different from the ini-

tial state there is a transition leading to it. This transition can only be ConcludeL or

ConcludeRL. Let us call (L,R)s a state from which a transition leads to Failstate.

In either of these cases, L does not contain any decision literal; so by Lemma 5, any

w1-model M of g(Π ) such that t(Π ,M) has no w2-model satisfies all the literals

of L. In other words, L is the only possible candidate for a w1-model of g(Π ) such

that t(Π , L) has no w2-model.

Case ConcludeL. It follows that L is inconsistent. Consequently, it is not a w1-

model M of g(Π ) such that t(Π , L) has no w2-model.

Case ConcludeRL. By Proposition 5 (d), the set of literals R is a w2-model of

t(Π , L). Thus L is not a w1-model of g(Π ) such that t(Π , L) has no w2-model.

Proof of Proposition 4

We first illustrate that any set M of literals that is a w1-model of g(Π ) such that

t(Π ,M) has no w2-model is such that M|atoms(Π ) is a stable model of Π . Indeed,

by the definition of w1-approximating functions w.r.t. w, M|atoms(Π ) is a w-model

of Π . Also, by the definition of w2-ensuring functions w.r.t. w, M|atoms(Π ) is a

stable model of Π .

Second, consider any stable model L of Π . By the definitions of w1-approximating

and w2-ensuring functions w.r.t. w, it follows there is M ′ such that M ′|atoms(Π ) = L

and M ′ is a w1-model of g(Π ) such that t(Π ,M ′) has no w2-model.
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Proof of Theorem 4

Let w1 denote a type such that Pg is w1-enforcing and the function g is w1-

approximating w.r.t. w. Let w2 denote a type such that Pt is w2-enforcing and

function t is w2-ensuring w.r.t. w. We now proceed to prove the four conditions of

the definition of ‘checks’ one by one.

1. By Lemma 4, the graph STT
Pg,g
Pt,t

(Π ) is acyclic and finite.

2. By Lemma 6 item 1, any terminal state is either Failstate or Ok(L).

3. By Lemma 6 item 1, any terminal state of STT
Pg,g
Pt,t

(Π ) reachable from the

initial state and other than Failstate is Ok(L), with L being a w1-model of

g(Π ) such that t(Π , L) has no w2-model. By Proposition 4, L|atoms(Π ) is a

stable model of Π .

4. By Lemma 6 item 2, Failstate is reachable from the initial state iff g(Π ) has

no w1-model L such that t(Π , L) has no w2-model. By Proposition 4, Π has

no stable models.

Proof of Proposition 2

Recall how we argued DP 2
Π is STTup,gC

up,tC
(Π ). Similarly, DP 2

g,t(Π ) is STTup,g
up,t (Π ).

By Theorem 2, up is cla-enforcing.

1. By Lemma 4, DP 2
g,t(Π ) is finite and acyclic.

2. By Lemma 6 item 1, any terminal state is either Failstate or Ok(L).

3. By Lemma 6 item 1, any terminal state of STT
Pg,g
Pt,t

(Π ) reachable from the

initial state and other than Failstate is Ok(L), with L being a cla-model of

g(Π ) such that t(Π , L) has no cla-model.

4. By Lemma 6 item 2, Failstate is reachable from the initial state iff g(Π ) has

no cla-model L such that t(Π , L) has no cla-model.

6.3 Proof of Theorem 5

First we prove an auxiliary lemma that will help handling CNF conversions of DNF

formulas.

For a DNF formula F , we define CNF (F ) as the conversion of F to CNF using

straightforward equivalent transformations: the distributivity of disjunction over

conjunction.

Lemma 7

Let F be a DNF formula. Let l be a literal of F . Let M be a set of literals.

The two following statements are equivalent:

1. there is a conjunctive clause D of F such that for every conjunctive clause

D′ ∈ F different from D, D′ is contradicted by M ,

2. there is a clause C of CNF (F ) such that l ∈ C and M contradicts C \ {l}.
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Proof

Formula F has the form
∨n

i=1

∧k
j=1 lij (when necessary the true constant > is added

multiple times to ensure that the conjunctive clauses of F are of equal length). Also

CNF (F ) =
∧

(k1...kn)∈{1...k}n
∨n

i=1 liki
.

From Statement 1 to Statement 2: Assume that there is a conjunctive clause D

of F such that for any other conjunctive clause D′ of F , this clause is contradicted

by M . Let l be a literal of D. Let D be
∧k

j=1 li0j for some i0. As any other con-

junctive clause is contradicted by M , and as these clauses are conjunctions, there

is least one literal of each of these clauses that is contradicted by M . Let us call

r1 . . . ri0−1ri0+1 . . . rn these literals. Then for each i ∈ {1, . . . , i0 − 1, i0 + 1, . . . , n},
there is k0

i ∈ {1, . . . k} such that li,k0
i

= ri. Also, there is some k0
i0

such that li,k0
i0

= l.

Then the clause
∨n

i=1 lik0
i

of CNF (F ) contains l while each of the other literals it

contains is contradicted by M .

From Statement 2 to Statement 1: Assume that for some clause of CNF (F ), all

literals but one are known to be contradicted by M . Then let this clause be
∨n

i=1 liki

for some i and let li0ki0
be the literal that is not contradicted by M . Then liki is

contradicted by M for any i other than i0. So
∧k

j=1 lij is contradicted by M for

any i other than i0. So D =
∧k

j=1 li0j is a conjunctive clause of F such that for any

other conjunctive clause D′ of F , this clause is contradicted by M .

Proof of Theorem 5

We must prove that for any edge in the graph STT sd,gD

Pt,t
(Π ) there is an edge in

STTup,cnfcomp
Pt,t

(Π ) linking two identical vertexes, and for any edge in the graph

STTup,cnfcomp
Pt,t

(Π ) there is an edge in STT sd,gD

Pt,t
(Π ) linking two identical vertexes.

If the edge is justified by a right-rule then this is obvious as these two graphs

have the same witness function and the same set of conditions for the PropagateR
rule. If the edge is DecideL, ConcludeL, BacktrackL, BacktrackRL or ConcludeRL
then obviously there is the same edge in the other graph, bearing the same name,

as these edges do not depend on the generating program or set of conditions for

the PropagateR rule.

It remains to study the case of an edge justified by PropagateL or CrossLR.

Assume we also have proved that PropagateL rules are identical in both graphs.

Then if an edge is justified by CrossLR in one of the graphs, which means that no

left-rule applies in this graph, equivalently no left-rule applies in the other graph,

and CrossLR also applies in that graph. We now show that PropagateL rules are

identical in both graphs, which will complete the proof.

Assume that an edge is justified by PropagateL in one of the graphs, let us prove

it also exists in the other graph.

A transition in STT sd,gD

Pt,t
(Π ) is justified by PropagateL with UnitPropagate as

condition. Then also there is an edge in STTup,cnfcomp
Pt,t

(Π ) with the same effect,

and justified by PropagateL with the UnitPropagate condition. Indeed, Π is part

of cnfcomp(Π ).
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A transition in STT sd,gD

Pt,t
(Π ) is justified by PropagateL with AllRulesCancelled

as condition. Then the edge is turning (L, ∅)L into (L¬a, ∅)L, and each rule A ∨
a ← B ∈ Π is not a supporting rule for a w.r.t. L. In other words, for each rule

A∨a← B ∈ Π the following holds L∩ (B ∪A) 6= ∅. Consequently, the conjunction

B∧A is contradicted by L. As a consequence
∨

A∨a←B∈Π (B∧A) is contradicted by

L. From Lemma 7, the fact that the DNF formula ¬a∨
∨

A∨a←B∈Π (B∧A) belongs

to comp(Π ), and the cnfcomp construction, it follows that there is a clause C in

cnfcomp(Π ) such that ¬a ∈ C and L contradicts C \{¬a}. So the rule PropagateL
with condition UnitPropagate of STTup,cnfcomp

Pt,t
(Π ) can be applied to C to add ¬a,

providing the edge we needed.

A transition in STT sd,gD

Pt,t
(Π ) is justified by PropagateL with BackchainTrue as

condition. The proof of this case is similar to the proof of previous case.

A transition in STTup,cnfcomp
Pt,t

(Π ) is justified by PropagateL with the condition

UnitPropagate. Let us call F0 the DNF formula ¬a∨
∨

A∨a←B∈Π (B∧A) of comp(Π )

for some atom a in Π .

Case 1: UnitL is applied to a clause of Π in cnfcomp(Π ). Then PropagateL with

the condition UnitPropagate itself provides the desired edge in STT sd,gD

Pt,t
(Π ).

Case 2: UnitL is applied to a clause obtained from F0 by the cnfcomp conversion.

Then by Lemma 7, the cnfcomp construction, and the UnitL condition there is a

conjunctive clause D of F0 such that for every conjunctive clause D′ in F0 that is

different from D the current L contradicts D′.

Case 2.1: This conjunctive clause is ¬a. Then L contradicts
∨

A∨a←B∈Π (B∧A).

It is easy to see that AllRulesCancelled provides the desired edge.

Case 2.2: This conjunctive clause is some B ∧ A. Then L contradicts ¬a so a

belongs to L. Also L contradicts all of {B′ ∧A′|A′ ∨ a← B′ ∈ Π \ {A ∨ a← B}}.
As a consequence BackchainTrue provides the desired edge.

7 Conclusions, Future and Related Work

Transition systems for describing dpll-based solving procedures have been in-

troduced by Nieuwenhuis et al. (2006). Lierler (2008) introduced and compared

the transition systems for the answer set solvers smodels and cmodels for non-

disjunctive programs. In this paper, we continue this direction of work by present-

ing a two-layer framework suitable to capture disjunctive answer set solvers. We

argue that this framework allows simpler analysis and comparison of these systems.

We first introduce a general template that includes the techniques implemented

in such solvers, and then define specific solvers by instantiating appropriate tech-

niques using this template. Formal results about the correctness of the abstract

representations are given. We believe that this work is a stepping stone towards

clear, comprehensive articulation of main design features of current disjunctive an-

swer set solvers that will inspire new solving algorithms. Section 5 hints at some of
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the possibilities. Indeed, to obtain a new solver one can combine any appropriately

chosen approximating-pair and ensuring-pair.

Nieuwenhuis et al. (2006) considered another extension of the graphs by intro-

ducing transition rules that capture backjumping and learning techniques common

in design of modern solvers, that later allowed Lierler (2011) to design, e.g., ab-

stract clasp. It is a direction of future work to extend the two-layer template graph

to model such advances solving techniques. This extension will allow us to model

disjunctive answer set solvers that rely heavily on backjumping and learning such

as clasp and wasp.

Related work. The approach based on transition systems for describing and compar-

ing ASP procedures is one of the three main alternatives studied in the ASP liter-

ature. Other methods include pseudo-code presentation of algorithms (Giunchiglia

and Maratea 2005; Giunchiglia et al. 2008) and tableau calculi (Gebser and Schaub

2006; Gebser and Schaub 2013). Giunchiglia et al. (2008) presented pseudo-code

descriptions of cmodels without backjumping and learning, smodels and dlv

without backjumping restricted to non-disjunctive programs. They study relation-

ships to the solving algorithms by analyzing the correspondence about the search

spaces they explore, focusing on tight programs: in particular, they note a tight

relation between solvers cmodels and dlv. Gebser and Schaub (2013) considered

formal proof systems based on tableau methods for characterizing the operations

and the strategies of ASP procedures for disjunctive programs. These proof systems

also allow cardinality constraints in the language of logic programs.

References

Alviano, M., Dodaro, C., Faber, W., Leone, N., and Ricca, F. 2013. WASP: A
native ASP solver based on constraint learning. In Proceedings of the 12th Interna-
tional Conference of Logic Programming and Nonmonotonic Reasoning (LPNMR 2013),
P. Cabalar and T. C. Son, Eds. Lecture Notes in Computer Science, vol. 8148. Springer,
54–66.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press.

Brochenin, R., Lierler, Y., and Maratea, M. 2014. Abstract disjunctive answer set
solvers. In Proceedings of the 21st European Conference on Artificial Intelligence (ECAI
2014). Frontiers in Artificial Intelligence and Applications, vol. 263. IOS Press, 165–170.
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