The decoupling between the representation of a certain problem, i.e., its
knowledge model, and the reasoning side is one of main strong points of
model-based Artificial Intelligence (AI). This allows, e.g. to focus on
improving the reasoning side by having advantages on the whole solving process.
Further, it is also well-known that many solvers are very sensitive to even
syntactic changes in the input. In this paper, we focus on improving the
reasoning side by taking advantages of such sensitivity. We consider two
well-known model-based AI methodologies, SAT and ASP, define a number of
syntactic features that may characterise their inputs, and use automated
configuration tools to reformulate the input formula or program. Results of a
wide experimental analysis involving SAT and ASP domains, taken from respective
competitions, show the different advantages that can be obtained by using input
reformulation and configuration. Under consideration in Theory and Practice of
Logic Programming (TPLP).Comment: Under consideration in Theory and Practice of Logic Programming
(TPLP