20 research outputs found
Recommended from our members
Full membrane spanning self-assembled monolayers as model systems for UHV-based studies of cell-penetrating peptides
Biophysical studies of the interaction of peptides with model membranes provide a simple yet effective approach to understand the transport of peptides and peptide based drug carriers across the cell membrane. Herein, the authors discuss the use of self-assembled monolayers fabricated from the full membrane-spanning thiol (FMST) 3-((14-((40-((5-methyl-1-phenyl-35-(phytanyl)oxy- 6,9,12,15,18,21,24,27,30,33,37-undecaoxa-2,3-dithiahenpentacontan-51-yl)oxy)-[1,10-biphenyl]-4- yl)oxy)tetradecyl)oxy)-2-(phytanyl)oxy glycerol for ultrahigh vacuum (UHV) based experiments. UHV-based methods such as electron spectroscopy and mass spectrometry can provide important information about how peptides bind and interact with membranes, especially with the hydrophobic core of a lipid bilayer. Near-edge x-ray absorption fine structure spectra and x-ray photoelectron spectroscopy (XPS) data showed that FMST forms UHV-stable and ordered films on gold. XPS and time of flight secondary ion mass spectrometry depth profiles indicated that a proline-rich amphipathic cell-penetrating peptide, known as sweet arrow peptide is located at the outer perimeter of the model membrane.This is the publisher’s final pdf. The article is copyrighted by the American Vacuum Society and published by the American Institute of Physics Publishing. It can be found at: http://scitation.aip.org/content/avs/journal/bip;jsessionid=1g93rvqb7shb6.x-aip-live-03
Synthese und zytotoxische Eigenschaften neuartiger Doxorubicinderivate
Der Fokus dieser Arbeit lag auf der Darstellung modifizierter Doxorubicin-Moleküle, um die mit der therapeutischen Anwendung verbundenen Hindernisse wie DNA-Bindungsaffinität, Tumorselektivität, Zell- sowie Nukleusakkumulation, Arzneistoffaufnahme und -resistenz zu überwinden. Für die Bewältigung dieser Limitierungen wurde das Anthrazyklin mit einem weiteren Arzneistoffmolekül sowie verschiedenen Peptiden und Proteinen funktionalisiert. Hierbei wurde zur Modifikation das aliphatische Keton des Arzneistoffs, unter Ausbildung von hydrolysestabilen Oximen, als Hauptstrukturelement verwendet. Wie Raymond B. Weiss bereits vor mehr als 20 Jahren erkannt hat, ist die Suche nach Anthrazyklinen mit besseren pharmakologischen Eigenschaften als die des Doxorubicin ein äußerst schwieriges Unterfangen. Die in dieser Arbeit dargestellten Doxorubicinderivate haben diverse Ansätze verfolgt, um dem â perfektenâ Anthrazyklin ein Stück näher zu kommen. Auch wenn dieses Ziel mit den bisher untersuchten Arzneistoffabkömmlingen noch nicht vollständig erreicht werden konnte, haben derartige Verbindungen ein außerordentlich großes Potential das sogenannte â bessere Doxorubicinâ in naher Zukunft ausfindig zu machen.186 S
Synthese und zytotoxische Eigenschaften neuartiger Doxorubicinderivate
Der Fokus dieser Arbeit lag auf der Darstellung modifizierter Doxorubicin-Moleküle, um die mit der therapeutischen Anwendung verbundenen Hindernisse wie DNA-Bindungsaffinität, Tumorselektivität, Zell- sowie Nukleusakkumulation, Arzneistoffaufnahme und -resistenz zu überwinden. Für die Bewältigung dieser Limitierungen wurde das Anthrazyklin mit einem weiteren Arzneistoffmolekül sowie verschiedenen Peptiden und Proteinen funktionalisiert. Hierbei wurde zur Modifikation das aliphatische Keton des Arzneistoffs, unter Ausbildung von hydrolysestabilen Oximen, als Hauptstrukturelement verwendet. Wie Raymond B. Weiss bereits vor mehr als 20 Jahren erkannt hat, ist die Suche nach Anthrazyklinen mit besseren pharmakologischen Eigenschaften als die des Doxorubicin ein äußerst schwieriges Unterfangen. Die in dieser Arbeit dargestellten Doxorubicinderivate haben diverse Ansätze verfolgt, um dem âperfektenâ Anthrazyklin ein Stück näher zu kommen. Auch wenn dieses Ziel mit den bisher untersuchten Arzneistoffabkömmlingen noch nicht vollständig erreicht werden konnte, haben derartige Verbindungen ein außerordentlich großes Potential das sogenannte âbessere Doxorubicinâ in naher Zukunft ausfindig zu machen
Fluorophore-labeled cyclic nucleotides as potent agonists of cyclic nucleotide-regulated ion channels
High‐affinity fluorescent derivatives of cyclic adenosine and guanosine monophosphate are powerful tools to investigate their natural targets. Cyclic nucleotide‐regulated ion channels belong to these targets and are vital for many signal transduction processes, such as vision and olfaction. The relation of ligand binding to activation gating is still challenging and there is a request for fluorescent probes that enable a breaking down to the single molecule level. This inspired us to prepare fluorophore‐labeled cyclic nucleotides, which are composed of a bright dye and a nucleotide derivative with a thiophenol motif at position 8 that has already been shown to enable superior binding affinity. The preparation of these bioconjugates was accomplished via a novel cross‐linking strategy that involves the substitution of the nucleobase with a modified thiophenolate in good yield. Both fluorescent nucleotides are potent activators of different cyclic nucleotide‐regulated ion channels with respect to the natural ligand and previously reported substances. Molecular docking of the probes excluding the fluorophore reveals that the high potency can be attributed to additional hydrophobic and cation‐π interactions between the ligand and the protein. Moreover, the introduced substances bear the potential to investigate related target proteins, such as cAMP‐ and cGMP‐dependent protein kinases, exchange proteins directly activated by cAMP or phosphodiesterases
Fluorophore‐Labeled Cyclic Nucleotides as Potent Agonists of Cyclic Nucleotide‐Regulated Ion Channels
High‐affinity fluorescent derivatives of cyclic adenosine and guanosine monophosphate are powerful tools to investigate their natural targets. Cyclic nucleotide‐regulated ion channels belong to these targets and are vital for many signal transduction processes, such as vision and olfaction. The relation of ligand binding to activation gating is still challenging and there is a request for fluorescent probes that enable a breaking down to the single molecule level. This inspired us to prepare fluorophore‐labeled cyclic nucleotides, which are composed of a bright dye and a nucleotide derivative with a thiophenol motif at position 8 that has already been shown to enable superior binding affinity. The preparation of these bioconjugates was accomplished via a novel cross‐linking strategy that involves the substitution of the nucleobase with a modified thiophenolate in good yield. Both fluorescent nucleotides are potent activators of different cyclic nucleotide‐regulated ion channels with respect to the natural ligand and previously reported substances. Molecular docking of the probes excluding the fluorophore reveals that the high potency can be attributed to additional hydrophobic and cation‐π interactions between the ligand and the protein. Moreover, the introduced substances bear the potential to investigate related target proteins, such as cAMP‐ and cGMP‐dependent protein kinases, exchange proteins directly activated by cAMP or phosphodiesterases
Multivalency: Key Feature in Overcoming Drug Resistance with a Cleavable Cell-Penetrating Peptide-Doxorubicin Conjugate
Chemical synthesis and biological activity of novel brominated 7-deazaadenosine-3′,5′-cyclic monophosphate derivatives
Molecular Structure and Pronounced Conformational Flexibility of Doxorubicin in Free and Conjugated State within a Drug–Peptide Compound
Functional and structural characterization of interactions between opposite subunits in HCN pacemaker channels
Hyperpolarization-activated and cyclic nucleotide (HCN) modulated channels are tetrameric cation channels. In each of the four subunits, the intracellular cyclic nucleotide-binding domain (CNBD) is coupled to the transmembrane domain via a helical structure, the C-linker. High-resolution channel structures suggest that the C-linker enables functionally relevant interactions with the opposite subunit, which might be critical for coupling the conformational changes in the CNBD to the channel pore. We combined mutagenesis, patch-clamp technique, confocal patch-clamp fluorometry, and molecular dynamics simulations to show that residue K464 of the C-linker is essential for stabilizing the closed state of the mHCN2 channel by forming interactions with the opposite subunit. MD simulations revealed that both cAMP and K464E induce a rotation of the intracellular domain relative to the channel pore, weakening the autoinhibitory effect of the unoccupied CL-CNBD region. The adopted poses are in excellent agreement with structural results
