8 research outputs found

    Efficient yet Competitive Speech Translation: FBK@IWSLT2022

    Get PDF
    The primary goal of this FBK’s systems submission to the IWSLT 2022 offline and simultaneous speech translation tasks is to reduce model training costs without sacrificing translation quality. As such, we first question the need of ASR pre-training, showing that it is not essential to achieve competitive results. Second, we focus on data filtering, showing that a simple method that looks at the ratio between source and target characters yields a quality improvement of 1 BLEU. Third, we compare different methods to reduce the detrimental effect of the audio segmentation mismatch between training data manually segmented at sentence level and inference data that is automatically segmented. Towards the same goal of training cost reduction, we participate in the simultaneous task with the same model trained for offline ST. The effectiveness of our lightweight training strategy is shown by the high score obtained on the MuST-C en-de corpus (26.7 BLEU) and is confirmed in high-resource data conditions by a 1.6 BLEU improvement on the IWSLT2020 test set over last year’s winning system

    The HER in alkaline media on Pt-modified three-dimensional Ni cathodes

    Full text link
    [EN] Electrodeposited porous Ni layers and commercial Ni foams were submitted to spontaneous deposition of Pt, achieved by immersing the Ni substrates in H2PtCl6 solutions, at open circuit, to produce Pt-modified 3D Ni electrodes. When using Ni foams, the immersion was prolonged until the whole amount of H2PtCl6 in the solution had reacted. Such an approach, which granted an easy control of the Pt loading, could not be used for Ni trodeposits, since they underwent significant corrosion. The true Pt surface area was determined by measuring, for each electrode, the hydrogen desorption charge according to methods described in the literature. The ratios between Pt surface area and Pt loading were higher for Ni foam electrodes than for porous Ni electrodeposits. Both kinds of Pt-modified Ni electrodes were used as cathodes for hydrogen evolution in 1 M KOH. Cathodes with Pt loading below 0.5 mg cm(-2) (referred to geometric surface area) evolved hydrogen at -100 mA cm(-2) with a -75 mV overpotential. The better activity of foam electrodes as compared to electrodeposits, especially at low Pt loading, was mainly due to their higher Pt surface area per unit Pt mass. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.The authors from IENI-CNR acknowledge the financial support of the Italian Ministry for Economic Development (MSE) - MSE-CNR Agreement on National Electrical System. I. Herraiz-Cardona is grateful to the Ministerio de Educacion of Spain for a post-graduate grant (Ref. AP2007-03737). The authors are indebted to Dr. Arianna Gambirasi, ICIS CNR, Padova, Italy for recording SEM images and to FILA INDUSTRIA CHIMICA SPA, San Martino di Lupari, Padova, Italy, owner of the Fei-ESem FEI Quanta 200 FEG instrument, for allowing its use for the research work described in this article.Fiameni, S.; Herraiz Cardona, I.; Musiani, M.; Pérez-Herranz, V.; Vázquez-Gómez, L.; Verlato, E. (2012). The HER in alkaline media on Pt-modified three-dimensional Ni cathodes. International Journal of Hydrogen Energy. 37(14):10507-10516. https://doi.org/10.1016/j.ijhydene.2012.04.100S1050710516371

    Il bilancio integrato per le PMI

    Get PDF
    Accanto ai capitali finanziario e produttivo, ogni impresa fonda il proprio business e il proprio successo anche su risorse intangibili, quali il capitale intellettuale, il capitale umano, il capitale sociale e relazionale ed il capitale naturale. Il tradizionale bilancio economico-finanziario, però, non è adatto a valutare e rappresentare tali risorse, poiché è stato concepito con riferimento ad un’economia industriale fondata pressoché esclusivamente su capitali tangibili; pertanto, anche avuto riguardo alla realtà delle PMI, si rende oggi necessario introdurre nuovi strumenti e nuovi indicatori per la misurazione e la rendicontazione, che siano in grado di cogliere e valorizzare anche le componenti immateriali del capitale aziendale. In questo contesto, il bilancio integrato si pone come una forma evoluta di comunicazione aziendale, finalizzata ad illustrare come strategia, governance, modello di business, rapporti con gli stakeholder, performance passate e prospettive future, rischi e opportunità consentano anche ad un’impresa di piccole e medie dimensioni di creare valore nel breve, medio e lungo termine

    On Improving the Training of Models for the Semantic Segmentation of Benthic Communities from Orthographic Imagery

    No full text
    The semantic segmentation of underwater imagery is an important step in the ecological analysis of coral habitats. To date, scientists produce fine-scale area annotations manually, an exceptionally time-consuming task that could be efficiently automatized by modern CNNs. This paper extends our previous work presented at the 3DUW’19 conference, outlining the workflow for the automated annotation of imagery from the first step of dataset preparation, to the last step of prediction reassembly. In particular, we propose an ecologically inspired strategy for an efficient dataset partition, an over-sampling methodology targeted on ortho-imagery, and a score fusion strategy. We also investigate the use of different loss functions in the optimization of a Deeplab V3+ model, to mitigate the class-imbalance problem and improve prediction accuracy on coral instance boundaries. The experimental results demonstrate the effectiveness of the ecologically inspired split in improving model performance, and quantify the advantages and limitations of the proposed over-sampling strategy. The extensive comparison of the loss functions gives numerous insights on the segmentation task; the Focal Tversky, typically used in the context of medical imaging (but not in remote sensing), results in the most convenient choice. By improving the accuracy of automated ortho image processing, the results presented here promise to meet the fundamental challenge of increasing the spatial and temporal scale of coral reef research, allowing researchers greater predictive ability to better manage coral reef resilience in the context of a changing environment

    Electrodeposition of Cu-Rh alloys and their use as cathodes for nitrate reduction

    No full text
    Cu-Rh alloys have been electrodeposited from sulfate solutions, pH 3.4. Although Rh is more noble than Cu, the reduction peak of Rh3 +was ca. 0.4 V more negative than that of Cu2 +. Therefore, the Rh/Cu ratio in the deposited alloys, determined by EDS analyses, increased as the deposition potential became more negative. XRD analyses showed that the deposited alloys were polycrystalline and suggested that metastable CuxRh1 - xsolid solutions were formed for 0.1 ≤ x ≤ 0.8, although for such compositions a miscibility gap is known to exist. The Cu-Rh alloys were tested as cathodes for the reduction of nitrates and found to have significant catalytic activity. © 2012 Elsevier B.V

    Safe Core-Satellite Magneto-Plasmonic Nanostructures for Efficient Targeting and Photothermal Treatment of Tumor Cells

    No full text
    Magneto-plasmonic nanostructures functionalized with cell targeting units are interesting for nanobiotechnology applications. Photothermal treatment of cells targeted with antibody functionalized nanostructures and magnetically isolated, allows killing selected cells and is one of the applications of great interest. The magneto-plasmonic nanostructures here reported are synthesized with naked gold and magnetite nanoparticles obtained with a green approach based on laser ablation of bulk materials in water. The particles do not need purifications steps for biocompatibility and are functionalized with a SERRS (surface enhanced resonance Raman scattering) active molecule for detection and with an antibody for targeting tumor prostate cells. Quantitative results for the cell targeting and selection efficiency show, at picomolar concentrations, an overall accuracy of 94%. The photothermal treatment efficiently kill targeted and magneto-selected cells producing a viability below 5% after 3 minutes of irradiation compared with almost 100% viability of incubated and irradiated, but non targeted, cells

    Overview of the RFX Fusion Science Program

    No full text
    With a program well-balanced among the goal of exploring the fusion potential of the reversed field pinch (RFP) and that of contributing to the solution of key science and technology prob- lems in the roadmap to ITER, the European RFX-mod device has produced a set of high-quality results since the last 2010 Fusion Energy Conference. RFX-mod is a 2 MA RFP, which can also be operated as a tokamak and where advanced confinement states have 3D features studied with stellarator tools. Self-organized equilibria with a single helical axis and improved confinement (SHAx) have been deeply investigated and a more profound understanding of their physics has been achieved. First wall conditioning with Lithium provides a tool to operate RFX at higher density than before, and application of helical magnetic boundary conditions favour stationary SHAx states. The correlation between the quality of helical states and the reduction of magnetic field errors acting as seed of magnetic chaos has been robustly proven. Helical states provide a unique test-bed for numerical codes conceived to deal with 3D effects in all magnetic configura- tions. In particular the stellarator equilibrium codes VMEC and V3FIT have been successfully adapted to reconstruct RFX-mod equilibria with diagnostic input. The border of knowledge has been significantly expanded also in the area of feedback control of MHD stability. Non-linear dynamics of tearing modes and their control has been modelled, allowing for optimization of feedback models. An integrated dynamic model of the RWM control system has been developed integrating the plasma response to multiple RWMs with active and passive conducting structures (CarMa model) and with a complete representation of the control system. RFX has been oper- ated as a tokamak with safety factor kept below 2, with complete active stabilization of the p2, 1q Resistive Wall Mode (RWM). This opens the exploration of a broad and interesting operational range otherwise excluded to standard tokamaks. Control experiments and modelling led to the design of a significant upgrade of the RFX-mod feedback control system to dramatically enhance computing power and reduce system latency. The possibility of producing D-shaped plasmas is being explore
    corecore