50,718 research outputs found

    More ergodic billiards with an infinite cusp

    Full text link
    In a previous paper (nlin.CD/0107041) the following class of billiards was studied: For f:[0,+∞)⟶(0,+∞)f: [0, +\infty) \longrightarrow (0, +\infty) convex, sufficiently smooth, and vanishing at infinity, let the billiard table be defined by QQ, the planar domain delimited by the positive xx-semiaxis, the positive yy-semiaxis, and the graph of ff. For a large class of ff we proved that the billiard map was hyperbolic. Furthermore we gave an example of a family of ff that makes this map ergodic. Here we extend the latter result to a much wider class of functions.Comment: 13 pages, 4 figure

    Localization in a strongly disordered system: A perturbation approach

    Full text link
    We prove that a strongly disordered two-dimensional system localizes with a localization length given analytically. We get a scaling law with a critical exponent is ν=1\nu=1 in agreement with the Chayes criterion ν≥1\nu\ge 1. The case we are considering is for off-diagonal disorder. The method we use is a perturbation approach holding in the limit of an infinitely large perturbation as recently devised and the Anderson model is considered with a Gaussian distribution of disorder. The localization length diverges when energy goes to zero with a scaling law in agreement to numerical and theoretical expectations.Comment: 5 pages, no figures. Version accepted for publication on International Journal of Modern Physics

    Introduction to Library Trends 23 (3) Winter 1975: Music and Fine Arts in the General Library

    Get PDF
    published or submitted for publicatio

    Electron density distribution and screening in rippled graphene sheets

    Get PDF
    Single-layer graphene sheets are typically characterized by long-wavelength corrugations (ripples) which can be shown to be at the origin of rather strong potentials with both scalar and vector components. We present an extensive microscopic study, based on a self-consistent Kohn-Sham-Dirac density-functional method, of the carrier density distribution in the presence of these ripple-induced external fields. We find that spatial density fluctuations are essentially controlled by the scalar component, especially in nearly-neutral graphene sheets, and that in-plane atomic displacements are as important as out-of-plane ones. The latter fact is at the origin of a complicated spatial distribution of electron-hole puddles which has no evident correlation with the out-of-plane topographic corrugations. In the range of parameters we have explored, exchange and correlation contributions to the Kohn-Sham potential seem to play a minor role.Comment: 13 pages, 13 figures, submitted. High-quality figures can be requested to the author
    • …
    corecore