316 research outputs found

    Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response

    Full text link
    We investigate a stochastic version of a simple enzymatic reaction which follows the generic Michaelis-Menten kinetics. At sufficiently high concentrations of reacting species, the molecular fluctuations can be approximated as a realization of a Brownian dynamics for which the model reaction kinetics takes on the form of a stochastic differential equation. After eliminating a fast kinetics, the model can be rephrased into a form of a one-dimensional overdamped Langevin equation. We discuss physical aspects of environmental noises acting in such a reduced system, pointing out the possibility of coexistence of dynamical regimes where noise-enhanced stability and resonant activation phenomena can be observed together.Comment: 18 pages, 11 figures, published in Physical Review E 74, 041904 (2006

    Air quality impact of a decision support system for reducing pollutant emissions: CARBOTRAF

    Get PDF
    Traffic congestion with frequent “stop & go” situations causes substantial pollutant emissions. Black carbon (BC) is a good indicator of combustion-related air pollution and results in negative health effects. Both BC and CO2 emissions are also known to contribute significantly to global warming. Current traffic control systems are designed to improve traffic flow and reduce congestion. The CARBOTRAF system combines real-time monitoring of traffic and air pollution with simulation models for emission and local air quality prediction in order to deliver on-line recommendations for alternative adaptive traffic management. The aim of introducing a CARBOTRAF system is to reduce BC and CO2 emissions and improve air quality by optimizing the traffic flows. The system is implemented and evaluated in two pilot cities, Graz and Glasgow. Model simulations link traffic states to emission and air quality levels. A chain of models combines micro-scale traffic simulations, traffic volumes, emission models and air quality simulations. This process is completed for several ITS scenarios and a range of traffic boundary conditions. The real-time DSS system uses these off-line model simulations to select optimal traffic and air quality scenarios. Traffic and BC concentrations are simultaneously monitored. In this paper the effects of ITS measures on air quality are analysed with a focus on BC

    Regular obstructed categories and TQFT

    Full text link
    A proposal of the concept of nn-regular obstructed categories is given. The corresponding regularity conditions for mappings, morphisms and related structures in categories are considered. An n-regular TQFT is introduced. It is shown the connection of time reversibility with the regularity.Comment: 22 pages in Latex. To be published in J. Math. Phy

    Review-Development of Huckel Type Anions: From Molecular Modeling to Industrial Commercialization. A Success Story

    Get PDF
    This paper reviews the battery electrolyte technologies involving Huckel-type salts as a major electrolyte component. The concept was initially proposed by M. Armand in 1995 and then explored by several research groups. In the present review studies on the optimization of the electrolyte composition starting from molecular modeling through enhancing the yield of the salt synthesis to structural characterization and electrochemical performance are described. Furthermore, the use of the optimized electrolytes in a variety of lithium-ion and post-lithium batteries is presented and discussed. Finally, the commercialization of the up to date technology by Arkema is discussed as well as the performance of the present Huckel anion based electrolytes as compared to other marketed electrolyte technologies

    Mean first-passage times of non-Markovian random walkers in confinement

    Get PDF
    The first-passage time (FPT), defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role to quantify the efficiency of processes as varied as diffusion-limited reactions, target search processes or spreading of diseases. Most methods to determine the FPT properties in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects can not be neglected. Examples of non Markovian dynamics include single-file diffusion in narrow channels or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics \cite{turiv2013effect}, dense soft colloids or viscoelastic solution. Here, we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean FPT of a Gaussian non-Markovian random walker to a target point. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the trajectory of the random walker in the future of the first-passage event, which are shown to govern the FPT kinetics.This analysis is applicable to a broad range of stochastic processes, possibly correlated at long-times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes including the emblematic case of the Fractional Brownian Motion in one or higher dimensions. These results show, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.Comment: Submitted version. Supplementary Information can be found on the Nature website : http://www.nature.com/nature/journal/v534/n7607/full/nature18272.htm

    Modelling radiation-induced cell cycle delays

    Full text link
    Ionizing radiation is known to delay the cell cycle progression. In particular after particle exposure significant delays have been observed and it has been shown that the extent of delay affects the expression of damage such as chromosome aberrations. Thus, to predict how cells respond to ionizing radiation and to derive reliable estimates of radiation risks, information about radiation-induced cell cycle perturbations is required. In the present study we describe and apply a method for retrieval of information about the time-course of all cell cycle phases from experimental data on the mitotic index only. We study the progression of mammalian cells through the cell cycle after exposure. The analysis reveals a prolonged block of damaged cells in the G2 phase. Furthermore, by performing an error analysis on simulated data valuable information for the design of experimental studies has been obtained. The analysis showed that the number of cells analyzed in an experimental sample should be at least 100 to obtain a relative error less than 20%.Comment: 19 pages, 11 figures, accepted for publication in Radiation and Environmental Biophysic

    Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology

    Get PDF
    Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions

    Measurement of Production Properties of Positively Charged Kaons in Proton-Carbon Interactions at 31 GeV/c

    Get PDF
    Spectra of positively charged kaons in p+C interactions at 31 GeV/c were measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2007 with a graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections and charged pion spectra were already measured using the same set of data. These new measurements in combination with the published ones are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. In particular, the knowledge of kaon production is crucial for precisely predicting the intrinsic electron neutrino component and the high energy tail of the T2K beam. The results are presented as a function of laboratory momentum in 2 intervals of the laboratory polar angle covering the range from 20 up to 240 mrad. The kaon spectra are compared with predictions of several hadron production models. Using the published pion results and the new kaon data, the K+/\pi+ ratios are computed.Comment: 10 pages, 11 figure

    Measurements of π±\pi^\pm, K±^\pm, p and pˉ\bar{\textrm{p}} spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS

    Get PDF
    Measurements of inclusive spectra and mean multiplicities of π±\pi^\pm, K±^\pm, p and pˉ\bar{\textrm{p}} produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c (s=\sqrt{s} = 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer. Spectra are presented as function of rapidity and transverse momentum and are compared to predictions of current models. The measurements serve as the baseline in the NA61/SHINE study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter
    corecore