10 research outputs found

    Instructional Models for Course-Based Research Experience (CRE) Teaching

    Get PDF
    The course-based research experience (CRE) with its documented educational benefits is increasingly being implemented in science, technology, engineering, and mathematics education. This article reports on a study that was done over a period of 3 years to explicate the instructional processes involved in teaching an undergraduate CRE. One hundred and two instructors from the established and large multi-institutional SEA-PHAGES program were surveyed for their understanding of the aims and practices of CRE teaching. This was followed by large-scale feedback sessions with the cohort of instructors at the annual SEA Faculty Meeting and subsequently with a small focus group of expert CRE instructors. Using a qualitative content analysis approach, the survey data were analyzed for the aims of inquiry instruction and pedagogical practices used to achieve these goals. The results characterize CRE inquiry teaching as involving three instructional models: 1) being a scientist and generating data; 2) teaching procedural knowledge; and 3) fostering project ownership. Each of these models is explicated and visualized in terms of the specific pedagogical practices and their relationships. The models present a complex picture of the ways in which CRE instruction is conducted on a daily basis and can inform instructors and institutions new to CRE teaching

    Models of classroom assessment for course-based research experiences

    Get PDF
    Course-based research pedagogy involves positioning students as contributors to authentic research projects as part of an engaging educational experience that promotes their learning and persistence in science. To develop a model for assessing and grading students engaged in this type of learning experience, the assessment aims and practices of a community of experienced course-based research instructors were collected and analyzed. This approach defines four aims of course-based research assessment—(1) Assessing Laboratory Work and Scientific Thinking; (2) Evaluating Mastery of Concepts, Quantitative Thinking and Skills; (3) Appraising Forms of Scientific Communication; and (4) Metacognition of Learning—along with a set of practices for each aim. These aims and practices of assessment were then integrated with previously developed models of course-based research instruction to reveal an assessment program in which instructors provide extensive feedback to support productive student engagement in research while grading those aspects of research that are necessary for the student to succeed. Assessment conducted in this way delicately balances the need to facilitate students’ ongoing research with the requirement of a final grade without undercutting the important aims of a CRE education

    Rtf1 Is a Multifunctional Component of the Paf1 Complex That Regulates Gene Expression by Directing Cotranscriptional Histone Modificationâ–ż

    No full text
    Numerous transcription accessory proteins cause alterations in chromatin structure that promote the progression of RNA polymerase II (Pol II) along open reading frames (ORFs). The Saccharomyces cerevisiae Paf1 complex colocalizes with actively transcribing Pol II and orchestrates modifications to the chromatin template during transcription elongation. To better understand the function of the Rtf1 subunit of the Paf1 complex, we created a series of sequential deletions along the length of the protein. Genetic and biochemical assays were performed on these mutants to identify residues required for the various activities of Rtf1. Our results establish that discrete nonoverlapping segments of Rtf1 are necessary for interaction with the ATP-dependent chromatin-remodeling protein Chd1, promoting covalent modification of histones H2B and H3, recruitment to active ORFs, and association with other Paf1 complex subunits. We observed transcription-related defects when regions of Rtf1 that mediate histone modification or association with active genes were deleted, but disruption of the physical association between Rtf1 and other Paf1 complex subunits caused only subtle mutant phenotypes. Together, our results indicate that Rtf1 influences transcription and chromatin structure through several independent functional domains and that Rtf1 may function independently of its association with other members of the Paf1 complex

    Identification of a Role for Histone H2B Ubiquitylation in Noncoding RNA 3′-End Formation Through Mutational Analysis of Rtf1 in Saccharomyces cerevisiae

    No full text
    The conserved eukaryotic Paf1 complex regulates RNA synthesis by RNA polymerase II at multiple levels, including transcript elongation, transcript termination, and chromatin modifications. To better understand the contributions of the Paf1 complex to transcriptional regulation, we generated mutations that alter conserved residues within the Rtf1 subunit of the Saccharomyces cerevisiae Paf1 complex. Importantly, single amino acid substitutions within a region of Rtf1 that is conserved from yeast to humans, which we termed the histone modification domain, resulted in the loss of histone H2B ubiquitylation and impaired histone H3 methylation. Phenotypic analysis of these mutations revealed additional defects in telomeric silencing, transcription elongation, and prevention of cryptic initiation. We also demonstrated that amino acid substitutions within the Rtf1 histone modification domain disrupt 3′-end formation of snoRNA transcripts and identify a previously uncharacterized regulatory role for the histone H2B K123 ubiquitylation mark in this process. Cumulatively, our results reveal functionally important residues in Rtf1, better define the roles of Rtf1 in transcription and histone modification, and provide strong genetic support for the participation of histone modification marks in the termination of noncoding RNAs

    Genomic diversity of bacteriophages infecting Microbacterium spp.

    No full text
    The bacteriophage population is vast, dynamic, old, and genetically diverse. The genomics of phages that infect bacterial hosts in the phylum Actinobacteria show them to not only be diverse but also pervasively mosaic, and replete with genes of unknown function. To further explore this broad group of bacteriophages, we describe here the isolation and genomic characterization of 116 phages that infect Microbacterium spp. Most of the phages are lytic, and can be grouped into twelve clusters according to their overall relatedness; seven of the phages are singletons with no close relatives. Genome sizes vary from 17.3 kbp to 97.7 kbp, and their G+C% content ranges from 51.4% to 71.4%, compared to ~67% for their Microbacterium hosts. The phages were isolated on five different Microbacterium species, but typically do not efficiently infect strains beyond the one on which they were isolated. These Microbacterium phages contain many novel features, including very large viral genes (13.5 kbp) and unusual fusions of structural proteins, including a fusion of VIP2 toxin and a MuF-like protein into a single gene. These phages and their genetic components such as integration systems, recombineering tools, and phage-mediated delivery systems, will be useful resources for advancing Microbacterium genetics

    Instructional Models for Course-Based Research Experience (CRE) Teaching

    Get PDF
    The course-based research experience (CRE) with its documented educational benefits is increasingly being implemented in science, technology, engineering, and mathematics education. This article reports on a study that was done over a period of 3 years to explicate the instructional processes involved in teaching an undergraduate CRE. One hundred and two instructors from the established and large multi-institutional SEA-PHAGES program were surveyed for their understanding of the aims and practices of CRE teaching. This was followed by large-scale feedback sessions with the cohort of instructors at the annual SEA Faculty Meeting and subsequently with a small focus group of expert CRE instructors. Using a qualitative content analysis approach, the survey data were analyzed for the aims of inquiry instruction and pedagogical practices used to achieve these goals. The results characterize CRE inquiry teaching as involving three instructional models: 1) being a scientist and generating data; 2) teaching procedural knowledge; and 3) fostering project ownership. Each of these models is explicated and visualized in terms of the specific pedagogical practices and their relationships. The models present a complex picture of the ways in which CRE instruction is conducted on a daily basis and can inform instructors and institutions new to CRE teaching
    corecore