306 research outputs found
One Knee Stair Negotiator
The design-to-prototype process for a One Knee Stair Negotiator, designed to reduce or eliminate the weight on one leg while climbing stairs. The decision-making processes, fabrication plan, engineering analysis, safety concerns, and risk assessments are documented. Pertinent photographs, drawings, and video links are included for clarification
A double ion trap for large Coulomb crystals
While the linear radiofrequency trap finds various applications in
high-precision spectroscopy and quantum information, its higher-order cousin,
the linear multipole trap, is almost exclusively employed in physical
chemistry. Recently, first experiments have shown interesting features by
laser-cooling multipole-trapped ion clouds. Multipole traps show a flatter
potential in their centre and therefore a modified density distribution
compared to quadrupole traps. Micromotion is an important issue and will
certainly influence the dynamics of crystallized ion structures. Our experiment
tends to investigate possible crystallization processes in the multipole. In a
more general way, we are interested in the study of the dynamics and
thermodynamics of large ion clouds in traps of different geometry.Comment: 10th International Workshop on Non-Neutral Plasmas, Greifswald :
Germany (2012
Structural phase transitions in multipole traps
A small number of laser-cooled ions trapped in a linear radiofrequency
multipole trap forms a hollow tube structure. We have studied, by means of
molecular dynamics simulations, the structural transition from a double ring to
a single ring of ions. We show that the single-ring configuration has the
advantage to inhibit the thermal transfer from the rf-excited radial components
of the motion to the axial component, allowing to reach the Doppler limit
temperature along the direction of the trap axis. Once cooled in this
particular configuration, the ions experience an angular dependency of the
confinement if the local adiabaticity parameter exceeds the empirical limit.
Bunching of the ion structures can then be observed and an analytic expression
is proposed to take into account for this behaviour
Parallel ion strings in linear multipole traps
Additional radio-frequency (rf) potentials applied to linear multipole traps
create extra field nodes in the radial plane which allow one to confine single
ions, or strings of ions, in totally rf field-free regions. The number of nodes
depends on the order of the applied multipole potentials and their relative
distance can be easily tuned by the amplitude variation of the applied
voltages. Simulations using molecular dynamics show that strings of ions can be
laser cooled down to the Doppler limit in all directions of space. Once cooled,
organized systems can be moved with very limited heating, even if the cooling
process is turned off
Pinning an Ion with an Intracavity Optical Lattice
We report one-dimensional pinning of a single ion by an optical lattice. The
lattice potential is produced by a standing-wave cavity along the rf-field-free
axis of a linear Paul trap. The ion's localization is detected by measuring its
fluorescence when excited by standing-wave fields with the same period, but
different spatial phases. The experiments agree with an analytical model of the
localization process, which we test against numerical simulations. For the best
localization achieved, the ion's average coupling to the cavity field is
enhanced from 50% to 81(3)% of its maximum possible value, and we infer that
the ion is bound in a lattice well with over 97% probability.Comment: 5 pages, 4 figures; Text edited for clarity, results unchange
Carlo Michelstaedter: La Persuasione e la Rettorica
l'elaborato si concentra sui concetti di persuasione e rettorica nelle opere di Carlo Michelstaedter
Machine Learning Discovery of Computational Model Efficacy Boundaries
Computational models are formulated in hierarchies of variable fidelity, often with no quantitative rule for defining the fidelity boundaries. We have constructed a dataset from a wide range of atomistic computational models to reveal the accuracy boundary between higher-fidelity models and a simple, lower-fidelity model. The symbolic decision boundary is discovered by optimizing a support vector machine on the data through iterative feature engineering. This data-driven approach reveals two important results: (i) a symbolic rule emerges that is independent of the algorithm, and (ii) the symbolic rule provides a deeper understanding of the fidelity boundary. Specifically, our dataset is composed of radial distribution functions from seven high-fidelity methods that cover wide ranges in the features (element, density, and temperature); high-fidelity results are compared with a simple pair-potential model to discover the nonlinear combination of the features, and the machine learning approach directly reveals the central role of atomic physics in determining accuracy
- …