20 research outputs found

    Biomechanical Study of Tooth Implants for Low Density Bone

    Get PDF
    Tato práce se zabývá problematikou z oblasti dentální implantologie, v níž se při zavádění dentálních implantátů vyskytuje řada problémů. Základním problémem při aplikaci implantátu je kvalita kostní tkáně, která podstatně ovlivňuje její deformaci, napjatost a možnost následného selhání implantátu. Znalosti mechanických vlastností kostní tkáně čelisti a čelisti s aplikovaným implantátem mohou významně ovlivnit predikci selhání dentálních implantátů. V případě mechanické interakce je možné ji popsat veličinami určujícími deformaci a napjatost řešené soustavy. Proto bylo využito pro řešení výpočtové modelování pomocí metody konečných prvků. K biomechanickému posouzení selhání implantátu, zahrnujícímu kvalitu kostní tkáně, je nutné vytvořit výpočtový model řešené soustavy na vysoké rozlišovací úrovni. Za tímto účelem bylo nutné provést biomechanickou studii, která podstatně v této práci rozšířila okruh řešených problémů. V práci je prezentována metodologie jak provádět posouzení kvality kostní tkáně, do níž má být implantát zaveden, tak i posouzení jejich vzájemné interakce. Výsledky potvrzují nutnost vytvářet výpočtové modely kostní tkáně na vysoké rozlišovací úrovni včetně jejich složité trámečkové architektury. V práci je popsaná tvorba výpočtového modelu z dat pořízených na mikro-CT zařízení. Dále byl vytvořen výpočtový model trámčité struktury na 3D úrovni s dentálním implantátem a provedena deformačně napěťová analýza. Poslední část práce je věnována úvodní studii modelace a remodelace kostní tkáně.This work deals with problem of dental implant area, where there are many problems at the dental implants application. The essential issue is the bone tissue quality at implant application, which sig-nificantly influences its deformation, tension and the possibility of subsequent implant failure. The knowledge of bone tissue mechanical properties of mandible and mandible with applied implant can significantly affect prediction of dental implant failure. The mechanical interaction can be described by variable determining deformation and tension of solved system. For this reason the computational modeling by using Finite Element Method was used for solving given problem. The computational model creation of solved system on the high resolution level is necessary for biomechanical assessment of implant failure, including bone tissue quality. For this purpose the biomechanical study was performed, which significantly spreads range of solved problem in this work afterwards. In this work the methodology, which describes assessment of bone tissue quality where the implant should be applied as well as mutual interaction, is presented. The results confirm necessity of bone tissue computational models creation on high resolution level including complex trabecular architecture. In this work the creation of trabecular structure computational model from data gained on micro-CT device is described. Further, the trabecular structure computational model was created on the 3D level with dental implant and the stress strain analysis was performed consequently. The last part of this work deals with introductory study of bone tissue modeling and remodeling.

    Stress - strain analysis of jaw with tooth implant type BOI

    Get PDF
    Předložená práce se zabývá deformačně napěťovou analýzou čelisti se zubním implan-tátem. Implantát slouží jako vhodný pilíř pro korunku či můstek při ztrátě jednoho nebo více zubů. Práce je zaměřena na zubní implantáty typu BOI (basálně – oseo – integrovatelné), jejichž výrobcem je firma DENTALIHDE. Deformačně-napěťové stavy soustavy dolní čelisti s implantátem byly určeny vý-počtovým modelováním, metodou konečných prvků. Modelována je podstatná část spodní čelisti s aplikovanými implantáty typu EDS a EDDS. Po zavedení implantátu nastává proces hojení. Proto je zvláštní pozornost věnovaná deformačně – napěťovým stavům na různé úrov-ni oseointegrace. V práci je detailně popsaná tvorba jednotlivých částí výpočtového modelu i jeho řešení. Součástí práce je prezentace rozsáhlého souboru výsledků a následná deformač-ně napěťová analýza. K vytvoření modelu geometrie byl použit SolidWorks 2005. Výpočtový model a vlastní řešení bylo provedeno pomocí systémů ANSYS 11.0 a ANSYS Workbench.Submitted master thesis deals with stress - strain analysis of jaw, with dental implant. The implant serve as a suitable pillar for crown or dental bridge, when one or more teeth are lost. The project is oriented on BOI (basale - oseo - integrable) dental implant type, which is produced by DENTALIHDE company. Stress – strain condition of the mandible system with implant have been established by computational simulation, with use of the final elements method. Important part of down jowl is simulated on with EDS and EDDS applied types of implants. After implementation the implant begins to heal. Therefore the special attention is paid to stress - strain states on various level of osteointegration. There is a detail description of production of single part computational model and his solving in the master thesis. Presentation of large chapter with results and subsequent alteration stress - strain analysis is part of the master thesis. Program SolidWorks 2005 was used to create the geometric model. Computational model and the actual solving was accomplished with use of ANSYS 11.0 and ANSYS Wor-kbench systems.

    On the level of computational model of a human skull: a comparative study

    Get PDF
    In this study, different patient-specific computational models of the skull, which are often used in literature, were investigated, analysed and compared.The purpose of this studywas to demonstrate the differences in computational model creation and results in case different computationalmodels based on same computed tomography (CT) dataset are used. The selection of computationalmodel directly influences the values of investigated parameters. The effort is to demonstrate, how the selection of the computational model influences the results of biomechanically relevant parameters. The comparison was based on total displacement of the skull and von Mises strain investigated around predefined paths around the skull. The strain values were evaluated according to criterion from literature. The results were obtained using finite element method. The values of the displacement of the skull were higher in case of considering cancellous bone tissue due to its poor material properties or heterogeneous material properties. The same situation occurred during the evaluation of strain. The values were higher in models which include cancellous bone tissue in the structure

    A design influence on the mechanical compliance and fracture resistance of railway wheel

    Get PDF
    A fracture mechanics approach is used to determinate crack behaviour in a railway wheel which is working under different operating conditions with consideration of different types of railway wheel discs. Reliability of the railway wheel is related to a material failure. This paper is focused on failure of the material which is connected with violation consistency of the wheel material. The fracture mechanic approach is applied with consideration of influence of mechanical compliance. The topology optimization is used to define the shape of one disc type. Obtained results show fracture behaviour and the mechanical compliance of used railway wheel discs. From these results, comparison of separated railway wheel discs is obtained

    Biomechanical study of the bone tissue with dental implants interaction

    Get PDF
    The article deals with the stress-strain analysis of human mandible in the physiological state and after the dental implant application. The evaluation is focused on assessing of the cancellous bone tissue modeling-level. Three cancellous bone model-types are assessed: Non-trabecular model with homogenous isotropic material, nontrabecular model with inhomogeneous material obtained from computer tomography data using CT Data Analysis software, and trabecular model built from mandible section image. Computational modeling was chosen as the most suitable solution method and the solution on two-dimensional level was carried out. The results show that strain is more preferable value than stress in case of evaluation of mechanical response in cancellous bone. The non-trabecular model with CT-obtained material model is not acceptable for stress-strain analysis of the cancellous bone for singularities occurring on interfaces of regions with different values of modulus of elasticity

    Biomechanical performance of cranial implants with different thicknesses and material properties: A finite element study

    No full text
    This study investigated the effect of implant thickness and material on deformation and stress distribution within different components of cranial implant assemblies. Using the finite element method, two cranial implants, differing in size and shape, and thicknesses (1, 2, 3 and 4 mm, respectively), were simulated under three loading scenarios. The implant assembly model included the detailed geometries of the mini-plates and micro-screws and was simulated using a sub-modeling approach. Statistical assessments based on the Design of Experiment methodology and on multiple regression analysis revealed that peak stresses in the components are influenced primarily by implant thickness, while the effect of implant material is secondary. On the contrary, the implant deflection is influenced predominantly by implant material followed by implant thickness. The highest values of deformation under a 50 N load were observed in the thinnest (1 mm) Polymethyl Methacrylate implant (Small defect: 0.296 mm; Large defect: 0.390 mm). The thinnest Polymethyl Methacrylate and Polyether Ether Ketone implants also generated stresses in the implants that can potentially breach the materials' yield limit. In terms of stress distribution, the change of implant thickness had a more significant impact on the implant performance than the change of Young's modulus of the implant material. The results indicated that the stresses are concentrated in the locations of fixation; therefore, the detailed models of mini-plates and micro-screws implemented in the finite element simulation provided a better insight into the mechanical performance of the implant-skull system

    Biomechanical comparison of all-polyethylene total knee replacement and its metal-backed equivalent on periprosthetic tibia using the finite element method

    No full text
    Abstract Background Total knee arthroplasty (TKA) with all-polyethylene tibial (APT) components has shown comparable survivorship and clinical outcomes to that with metal-backed tibial (MBT). Although MBT is more frequently implanted, APT equivalents are considered a low-cost variant for elderly patients. A biomechanical analysis was assumed to be suitable to compare the response of the periprosthetic tibia after implantation of TKA NexGen APT and MBT equivalent. Methods A standardised load model was used representing the highest load achieved during level walking. The geometry and material models were created using computed tomography data. In the analysis, a material model was created that represents a patient with osteopenia. Results The equivalent strain distribution in the models of cancellous bone with an APT component showed values above 1000 με in the area below the medial tibial section, with MBT component were primarily localised in the stem tip area. For APT variants, the microstrain values in more than 80% of the volume were in the range from 300 to 1500 με, MBT only in less than 64% of the volume. Conclusion The effect of APT implantation on the periprosthetic tibia was shown as equal or even superior to that of MBT despite maximum strain values occurring in different locations. On the basis of the strain distribution, the state of the bone tissue was analysed to determine whether bone tissue remodelling or remodelling would occur. Following clinical validation, outcomes could eventually modify the implant selection criteria and lead to more frequent implantation of APT components
    corecore