115 research outputs found

    List of self-care measures and preventive activities of health care personnel who work at the Vesalio Lima 2022 clinic.

    Get PDF
    Objetivo: Determinar la relación de las medidas del autocuidado y las actividades preventivas del profesional de salud asistencial que labora en la Clínica Vesalio Lima 2022. Metodología: No Experimental, Transversal – Correlacional. Fueron estudiadas las variables medidas de autocuidado y actividades preventivas, en 50 profesionales de Salud asistenciales. Se utilizaron dos instrumentos: La escala “ASA” de Colombia y “Cuestionario básico y criterios metodológicos sobre Condiciones de Trabajo, Empleo y Salud en América Latina y el Caribe”. Resultados: Según las medidas de autocuidado el 34% de los encuestados presentaron una deficiente medida del autocuidado, el 54 % presentaron una regular medida del autocuidado y solo el 12% de los participantes presentaron una eficiente medida del autocuidado; también se muestra que, el 44% presentaron actividades preventivas deficientes, el 24% presentaron actividades preventivas regulares y el 32% presentan actividades preventivas eficientes. Al correlacionar las variables sobre medidas de autocuidado tienen una percepción deficiente y actividades preventivas regular con un porcentaje del 50%. Conclusión: Notamos que las variables medidas de autocuidado y actividades preventivas ambos no tienen correlación, además que las medidas de autocuidado son de regular percepción y manejo; también se demuestra que las actividades preventivas son deficientes ya que no se tiene un conocimiento adecuado sobre ese aspecto en el lugar de trabajo

    Morphological and functional responses of sunflower to Cu excess

    Get PDF
    The potential use of a metal-tolerant sunflower mutant line for biomonitoring Cu phytoavailability, Cu-induced soil phytotoxicity, and Cu phytoextraction was assessed on a Cu-contaminated soil series (13–1020 mg Cu kg−1) obtained by fading a sandy topsoil from a wood preservation site with a similar uncontaminated soil. Morphological and functional plant responses as well as shoot, leaf, and root ionomes were measured after a 1-month pot experiment. Hypocotyl length, shoot and root dry weight (DW) yields, and leaf area gradually decreased as soil Cu exposure rose. Their dose-response curves (DRC) plotted against indicators of Cu exposure were generally well fitted by sigmoidal curves. The half-maximal effective concentration (EC50) of morphological parameters ranged between 203 and 333 mg Cu kg−1 soil, corresponding to 290–430 μg Cu L−1 in the soil pore water, and 20 ± 5 mg Cu kg−1 DW in the shoots. The EC10 for shoot Cu concentration (13–15 mg Cu kg−1 DW) coincided to 166 mg Cu kg−1 soil. Total chlorophyll content and total antioxidant capacity (TAC) were early biomarkers (EC10: 23 and 51 mg Cu kg−1 soil). Their DRC displayed a biphasic response. Photosynthetic pigment contents, e.g., carotenoids, correlated with TAC. Ionome was changed in Cu-stressed roots, shoots, and leaves. Shoot Cu removal peaked roughly at 280 μg Cu L−1 in the soil pore water

    Evariste III: A new multi-FPGA system for fair benchmarking of hardware dependent cryptographic primitives

    No full text
    International audienceCryptographic primitives such as True Random Number Generator (TRNG), Physical Unclonable Function (PUF) but also cryptographic algorithms need to be tested and evaluated in different technologies, but with identical system architecture and operating conditions in order to be fairly compared. The random data generated by a TRNG or responses of a PUF are strongly linked to the underlying technology, but also to the environment conditions (EMI, temperature, power supply voltage…). Similarly, success of the side channel attacks on cryptographic algorithms depends strongly on technology, system architecture and operating conditions. Most of FPGA families have their own evaluation boards developed by their constructors and they are not adapted to fair benchmarking and side channel analysis (SCA). Indeed, all these boards are built in a completely different ways and have different architectures, communication protocols and peripherals. Consequently, fair comparison of TRNGs, PUFs or side channel attacks using standard evaluation boards is clearly impossible. The proposed multi-FPGA modular system Evariste III that is derived from the older Evariste II modular system [1], which was aimed at testing TRNGs, is now extended to be suitable for testing all hardware dependent cryptographic primitives: TRNGs, PUFs, but also for performing side channel attacks on cryptographic algorithms in different FPGA technologies with a unified hardware platform. Figure 1: Evariste III system (left), Evariste III hardware (right): motherboards and application modules The hardware system of Evariste III is composed of a set of motherboards with ZIF (zero insertion force) connectors and application modules (see Figure 1). A base of six motherboards placed in a box interconnected by a JTAG chain makes a parallel evaluation of up to six modules possible. This is very helpful in PUF characterization that needs numerous data acquisitions to be performed in different operating conditions [2]. Besides the ZIF connectors for application modules, the Evariste III motherboards contain a USB interface controller, linear power supplies, high quality low pass filters and all necessary connectors. Three types of application modules have been designed for this new modular system. Each module is built around different FPGA family: Altera Cyclone V, Xilinx Spartan 6 and Microsemi Smart Fusion 2 with an embedded SoC based on an ARM processor. All daughter modules contain SMA connectors making SCA easier. The Evariste III motherboards are compatible with old modules of Evariste II (9 types of modules are available). The software tools and IP functions are open source. Reference designs can be freely downloaded. For academic institutions, the hardware can be made available remotely. Researchers can download related tools from the website and can upload their configuration bitstream to the remote FPGA. They can then download random data or PUF responses that were generated in the same hardware and in the same working conditions, in order to compare fairly different state-of-the-art TRNGs or PUFs. [1] http://labh-curien.univ-st-etienne.fr/wiki-evariste/index.php/Main_Page [2] http://www.univ-st-etienne.fr/salware

    Phytomanagement and Remediation of Cu-Contaminated Soils by High Yielding Crops at a Former Wood Preservation Site: Sunflower Biomass and Ionome

    Get PDF
    This long-term field trial aimed at remediating a Cu-contaminated soil to promote crop production and soil functions at a former wood preservation site. Twenty-eight field plots with total topsoil Cu in the 198–1,169 mg kg−1 range were assessed. Twenty-four plots (OMDL) were amended in 2008 with a compost (made of pine bark chips and poultry manure, OM, 5% w/w) and dolomitic limestone (DL, 0.2%), and thereafter annually phytomanaged with a sunflower—tobacco crop rotation. In 2013, one untreated plot (UNT) was amended with a green waste compost (GW, 5%) whereas 12 former OMDL plots received a second compost dressing using this green waste compost (OM2DL, 5%). In 2011, one plot was amended with the Carmeuse basic slag (CAR, 1%) and another plot with a P-spiked Linz-Donawitz basic slag (PLD,1%). Thus six soil treatments, i.e., UNT, OMDL, OM2DL, GW, CAR, and PLD, were cultivated in 2016 with sunflower (Helianthus annuus L. cv Ethic). Shoots were harvested and their ionome analyzed. Athigh soil Cu contamination, the 1M NH4NO3-extractable vs. total soil Cu ratio ranked in decreasing order: Unt (2.35)>CAR (1.02), PLD (0.83)>GW (0.58), OMDL (0.44), OM2DL (0.37), indicating a lower Cu extractability in the compost-amended plots. Allamendments improved the soil nutrient status and the soil pH, which was slightly acidicin the UNT soil. Total organic C and N and extractable P contents peaked in the OM2DL soils. Both OMDL and OM2DL treatments led to higher shoot DW yields and Cu removals than the GW, CAR, and PLD treatments. Shoot DW yields decreased as total topsoil Cu rose in the OMDL plots, on the contrary to the OM2DL plots, demonstrating the benefits to repeat compost application after 5 years. Shoot Cu concentrations notably of OMDL and OM2DL plants fitted into their common range and can be used by biomass Mench et al. Phytomanagement of Cu-Contaminated Soils processing technologies and oilseeds as well. In overall, there is a net gain in soil physico-chemical properties and underlying soil functions

    Dendara métropole

    Get PDF
    Le chantier « Dendara métropole » vise à étudier les divers aspects du temple d’Hathor dans son environnement, en portant les investigations sur l’étude architecturale des monuments ainsi que sur l’exploration archéologique des quartiers d’habitations et des cimetières. Outre la poursuite des travaux sur l’architecture monumentale, sur les secteurs associés aux fondations de Montouhotep II et sur la nécropole de l’Ancien Empire, la campagne 2019 a ouvert de nouvelles perspectives de recherche..

    IP Watermark Verification Based on Power Consumption Analysis

    No full text
    International audienceThe increasing production costs of electronic devices and changes in the design methods of integrated circuits (ICs) has led to emerging threats in the microelectronics industry. Today, high value chips are the target of counterfeiting, theft and malicious hardware insertion (such as hardware trojans). Intellectual property (IP) protection has become a major concern and we propose to fight counterfeiting and theft by designing salutary hardware (salware). Instead of insert malicious effects inside an IP like a malware (e.g. a hardware trojan), a salware uses the same techniques, strategies and means for IP protection. One of the most studied salware is IP watermarking. Many works propose to target the finite state machine of digital IP to perform the watermarking. But, most of the time, the verification of the watermark is not clearly described. This conduces to a lack of credibility of these works. This paper proposes a watermark verification scheme using a correlation analysis based on the measurement of the IC power consumption. This article presents this process of verification and also discusses the selection of its parameters according to experimental results

    Phytoremediation of Cu contaminated waters in constructed wetlands

    No full text
    Ces travaux contribuent à caractériser des compartiments environnementaux (i.e. eau, sol et solution du sol, substrat, macrophytes à l’échelle individuelle et des communautés) et leur fonctionnement pour in fine améliorer l’efficacité de zones humides construites (CW) à décontaminer une masse d’eau contaminée en cuivre. Les connaissances sur le maintien de l’homéostasie de Cu chez les végétaux ainsi que sa phytotoxicité aux expositions élevées sont résumées. Les principaux mécanismes physico-chimiques et biologiques intervenant en phytoremédiation d’eaux contaminées en Cu en CW sont également discutés. Plusieurs solutions de phytoremédiation de type phytostabilisation aidée ont été évaluées en lysimètres in situ sur un site de traitement du bois contaminé au Cu, afin d’établir le potentiel de certains amendements à sorber Cu dans le substrat des CW. Les concentrations en éléments traces potentiellement toxiques (PTTE, dont Cu) et macroéléments des lixiviats migrants vers les horizons aquifères ont été quantifiées. Un laitier sidérurgique de type Linz-Donawitz enrichi en P (LDS, 1%) a permis le meilleur développement de Lemna minor L., utilisé ici comme bioindicateur, exposée aux lixiviats. En parallèle, les communautés de macrophytes ont été suivies le long du parcours de la Jalle d’Eysines, une rivière urbaine contaminée en Cu et autres PTTE. Les concentrations en PTTE ont été déterminées dans le sol, l’eau, l’eau interstitielle et les feuilles de 7 espèces de macrophytes. Un modèle statistique multivarié (analyse discriminante linéaire, LDA) a ensuite été élaboré sur la base des concentrations foliaires en PTTE pour biosurveiller l’exposition des macrophytes. Des populations de macrophytes ont aussi été prélevées sur des zones humides de contamination croissante en Cu en Europe (France, Espagne, Portugal et Italie), Biélorussie et Australie. La production de racines chez les macrophytes exposées pendant 3 semaines à des concentrations croissantes en Cu (0,08 ; 2,5 ; 5 ; 15 et 25 µM Cu) montre une variabilité intra-spécifique de la tolérance au Cu pour des populations de Juncus effusus, Schoenoplectus lacustris et Phalaris arundinacea. A l’inverse, une réponse similaire à une tolérance constitutive a été obtenue chez Typha latifolia et Iris pseudacorus, deux espèces à forte production de rhizomes. L’importance des rhizomes est discutée. Phragmites australis produit également des rhizomes, mais a présenté une variabilité intra-spécifique dans sa production racinaire en réponse à une exposition au Cu. En CW, à l’échelle du mésocosme (110 dm3), jusqu’à 99% du Cu de la masse d’eau (concentration initiale: 2.5µM Cu) ont été éliminés dans les trois modalités plantées de Juncus articulatus, P. arundinacea et P. australis, ainsi que dans le contrôle non planté. Les rôles du biofilm microbien, du substrat et des macrophytes en CW ainsi que leurs interactions sont discutés. La sélection d’écotypes de macrophytes tolérants aux PTTE pour leur utilisation en zone humide construite ainsi que les mécanismes moléculaires impliqués dans la variabilité intra-spécifique de cette tolérance, notamment chez P. australis, sont deux thèmes de recherche à promouvoir.This work aims at characterizing environmental compartments (i.e. water, soil and soil pore water, substrate, macrophytes at the individual and community scale) and their functioning to in fine improve the effectiveness of constructed wetlands (CW) for cleaning Cu-contaminated waters. Knowledge on the homeostasis of Cu in plants and its phytotoxicity at medium and high exposures are summarized. The main physico-chemical and biological mechanisms involved in the phytoremediation of Cu-contaminated water in CW are discussed. Several aided-phytostabilisation options were in situ evaluated in lysimeters at a Cu-contaminated wood preservation site to assess the potential of four amendments to sorb Cu in a CW substrate. Concentrations of potentially toxic trace elements (PTTE, including Cu) and macronutrients of leachates migrating from the root zone to the aquifers were quantified. Based on the responses of Lemna minor L. used as a bioindicator exposed to the leachates, Linz-Donawitz slag spiked with P (LDS, 1%) best performed to sorb labile Cu in the root zone. In parallel, macrophyte communities were monitored along the Jalle Eysines River, an urban river slightly contaminated by Cu and other PTTE. The PTTE concentrations were determined in the soil, water, soil pore water, and in the leaves of seven macrophyte species. A multivariate statistical model was developed based on the foliar PTTE concentrations for biomonitoring macrophyte exposures. Populations of macrophytes were also collected in wetlands displaying an increasing Cu contamination in Europe (France, Spain, Portugal, and Italy), Belarus and Australia. Root production of macrophytes exposed for 3 weeks at increasing Cu concentrations (0.08, 2.5, 5, 15 and 25 µM Cu) shows an intra-specific variability of Cu tolerance in populations of Juncus effusus, Schoenoplectus lacustris and Phalaris arundinacea. In contrast, a similar response to constitutive tolerance occurred for Typha latifolia and Iris pseudacorus, two species with high production of rhizomes. The rhizome influence is discussed. Phragmites australis also produces rhizomes but showed intra-specific variability in response to Cu exposure. In a CW at mesocosm scale (110 dm3), up to 99% of Cu in water (initial concentration: 2.5μM Cu) was removed after 2 weeks in the three modalities planted with Juncus articulatus, P. arundinacea and P. australis, and in the unplanted control. The influences of microbial biofilms, the substrate, and the macrophyte species and their interactions in CW are discussed. The selection of PTTE-tolerant macrophytes for their used in CW and the understanding of molecular mechanisms underlying the intra-specific variability in PTTE- tolerance, i.e for P. australis, require further investigations

    Phytoremédiation en zones humides construites d'eaux contaminées en cuivre

    No full text
    This work aims at characterizing environmental compartments (i.e. water, soil and soil pore water, substrate, macrophytes at the individual and community scale) and their functioning to in fine improve the effectiveness of constructed wetlands (CW) for cleaning Cu-contaminated waters. Knowledge on the homeostasis of Cu in plants and its phytotoxicity at medium and high exposures are summarized. The main physico-chemical and biological mechanisms involved in the phytoremediation of Cu-contaminated water in CW are discussed. Several aided-phytostabilisation options were in situ evaluated in lysimeters at a Cu-contaminated wood preservation site to assess the potential of four amendments to sorb Cu in a CW substrate. Concentrations of potentially toxic trace elements (PTTE, including Cu) and macronutrients of leachates migrating from the root zone to the aquifers were quantified. Based on the responses of Lemna minor L. used as a bioindicator exposed to the leachates, Linz-Donawitz slag spiked with P (LDS, 1%) best performed to sorb labile Cu in the root zone. In parallel, macrophyte communities were monitored along the Jalle Eysines River, an urban river slightly contaminated by Cu and other PTTE. The PTTE concentrations were determined in the soil, water, soil pore water, and in the leaves of seven macrophyte species. A multivariate statistical model was developed based on the foliar PTTE concentrations for biomonitoring macrophyte exposures. Populations of macrophytes were also collected in wetlands displaying an increasing Cu contamination in Europe (France, Spain, Portugal, and Italy), Belarus and Australia. Root production of macrophytes exposed for 3 weeks at increasing Cu concentrations (0.08, 2.5, 5, 15 and 25 µM Cu) shows an intra-specific variability of Cu tolerance in populations of Juncus effusus, Schoenoplectus lacustris and Phalaris arundinacea. In contrast, a similar response to constitutive tolerance occurred for Typha latifolia and Iris pseudacorus, two species with high production of rhizomes. The rhizome influence is discussed. Phragmites australis also produces rhizomes but showed intra-specific variability in response to Cu exposure. In a CW at mesocosm scale (110 dm3), up to 99% of Cu in water (initial concentration: 2.5μM Cu) was removed after 2 weeks in the three modalities planted with Juncus articulatus, P. arundinacea and P. australis, and in the unplanted control. The influences of microbial biofilms, the substrate, and the macrophyte species and their interactions in CW are discussed. The selection of PTTE-tolerant macrophytes for their used in CW and the understanding of molecular mechanisms underlying the intra-specific variability in PTTE- tolerance, i.e for P. australis, require further investigations.Ces travaux contribuent à caractériser des compartiments environnementaux (i.e. eau, sol et solution du sol, substrat, macrophytes à l’échelle individuelle et des communautés) et leur fonctionnement pour in fine améliorer l’efficacité de zones humides construites (CW) à décontaminer une masse d’eau contaminée en cuivre. Les connaissances sur le maintien de l’homéostasie de Cu chez les végétaux ainsi que sa phytotoxicité aux expositions élevées sont résumées. Les principaux mécanismes physico-chimiques et biologiques intervenant en phytoremédiation d’eaux contaminées en Cu en CW sont également discutés. Plusieurs solutions de phytoremédiation de type phytostabilisation aidée ont été évaluées en lysimètres in situ sur un site de traitement du bois contaminé au Cu, afin d’établir le potentiel de certains amendements à sorber Cu dans le substrat des CW. Les concentrations en éléments traces potentiellement toxiques (PTTE, dont Cu) et macroéléments des lixiviats migrants vers les horizons aquifères ont été quantifiées. Un laitier sidérurgique de type Linz-Donawitz enrichi en P (LDS, 1%) a permis le meilleur développement de Lemna minor L., utilisé ici comme bioindicateur, exposée aux lixiviats. En parallèle, les communautés de macrophytes ont été suivies le long du parcours de la Jalle d’Eysines, une rivière urbaine contaminée en Cu et autres PTTE. Les concentrations en PTTE ont été déterminées dans le sol, l’eau, l’eau interstitielle et les feuilles de 7 espèces de macrophytes. Un modèle statistique multivarié (analyse discriminante linéaire, LDA) a ensuite été élaboré sur la base des concentrations foliaires en PTTE pour biosurveiller l’exposition des macrophytes. Des populations de macrophytes ont aussi été prélevées sur des zones humides de contamination croissante en Cu en Europe (France, Espagne, Portugal et Italie), Biélorussie et Australie. La production de racines chez les macrophytes exposées pendant 3 semaines à des concentrations croissantes en Cu (0,08 ; 2,5 ; 5 ; 15 et 25 µM Cu) montre une variabilité intra-spécifique de la tolérance au Cu pour des populations de Juncus effusus, Schoenoplectus lacustris et Phalaris arundinacea. A l’inverse, une réponse similaire à une tolérance constitutive a été obtenue chez Typha latifolia et Iris pseudacorus, deux espèces à forte production de rhizomes. L’importance des rhizomes est discutée. Phragmites australis produit également des rhizomes, mais a présenté une variabilité intra-spécifique dans sa production racinaire en réponse à une exposition au Cu. En CW, à l’échelle du mésocosme (110 dm3), jusqu’à 99% du Cu de la masse d’eau (concentration initiale: 2.5µM Cu) ont été éliminés dans les trois modalités plantées de Juncus articulatus, P. arundinacea et P. australis, ainsi que dans le contrôle non planté. Les rôles du biofilm microbien, du substrat et des macrophytes en CW ainsi que leurs interactions sont discutés. La sélection d’écotypes de macrophytes tolérants aux PTTE pour leur utilisation en zone humide construite ainsi que les mécanismes moléculaires impliqués dans la variabilité intra-spécifique de cette tolérance, notamment chez P. australis, sont deux thèmes de recherche à promouvoir

    Phytoremediation in constructed wetlands (CW) of waters contaminated by copper.

    No full text
    Ces travaux contribuent à caractériser des compartiments environnementaux (i.e. eau, sol et solution du sol, substrat, macrophytes à l’échelle individuelle et des communautés) et leur fonctionnement pour in fine améliorer l’efficacité de zones humides construites (CW) à décontaminer une masse d’eau contaminée en cuivre. Les connaissances sur le maintien de l’homéostasie de Cu chez les végétaux ainsi que sa phytotoxicité aux expositions élevées sont résumées. Les principaux mécanismes physico-chimiques et biologiques intervenant en phytoremédiation d’eaux contaminées en Cu en CW sont également discutés. Plusieurs solutions de phytoremédiation de type phytostabilisation aidée ont été évaluées en lysimètres in situ sur un site de traitement du bois contaminé au Cu, afin d’établir le potentiel de certains amendements à sorber Cu dans le substrat des CW. Les concentrations en éléments traces potentiellement toxiques (PTTE, dont Cu) et macroéléments des lixiviats migrants vers les horizons aquifères ont été quantifiées. Un laitier sidérurgique de type Linz-Donawitz enrichi en P (LDS, 1%) a permis le meilleur développement de Lemna minor L., utilisé ici comme bioindicateur, exposée aux lixiviats. En parallèle, les communautés de macrophytes ont été suivies le long du parcours de la Jalle d’Eysines, une rivière urbaine contaminée en Cu et autres PTTE. Les concentrations en PTTE ont été déterminées dans le sol, l’eau, l’eau interstitielle et les feuilles de 7 espèces de macrophytes. Un modèle statistique multivarié (analyse discriminante linéaire, LDA) a ensuite été élaboré sur la base des concentrations foliaires en PTTE pour biosurveiller l’exposition des macrophytes. Des populations de macrophytes ont aussi été prélevées sur des zones humides de contamination croissante en Cu en Europe (France, Espagne, Portugal et Italie), Biélorussie et Australie. La production de racines chez les macrophytes exposées pendant 3 semaines à des concentrations croissantes en Cu (0,08 ; 2,5 ; 5 ; 15 et 25 µM Cu) montre une variabilité intra-spécifique de la tolérance au Cu pour des populations de Juncus effusus, Schoenoplectus lacustris et Phalaris arundinacea. A l’inverse, une réponse similaire à une tolérance constitutive a été obtenue chez Typha latifolia et Iris pseudacorus, deux espèces à forte production de rhizomes. L’importance des rhizomes est discutée. Phragmites australis produit également des rhizomes, mais a présenté une variabilité intra-spécifique dans sa production racinaire en réponse à une exposition au Cu. En CW, à l’échelle du mésocosme (110 dm3), jusqu’à 99% du Cu de la masse d’eau (concentration initiale: 2.5µM Cu) ont été éliminés dans les trois modalités plantées de Juncus articulatus, P. arundinacea et P. australis, ainsi que dans le contrôle non planté. Les rôles du biofilm microbien, du substrat et des macrophytes en CW ainsi que leurs interactions sont discutés. La sélection d’écotypes de macrophytes tolérants aux PTTE pour leur utilisation en zone humide construite ainsi que les mécanismes moléculaires impliqués dans la variabilité intra-spécifique de cette tolérance, notamment chez P. australis, sont deux thèmes de recherche à promouvoir.This work aims at characterizing environmental compartments (i.e. water, soil and soil pore water, substrate, macrophytes at the individual and community scale) and their functioning to in fine improve the effectiveness of constructed wetlands (CW) for cleaning Cu-contaminated waters. Knowledge on the homeostasis of Cu in plants and its phytotoxicity at medium and high exposures are summarized. The main physico-chemical and biological mechanisms involved in the phytoremediation of Cu-contaminated water in CW are discussed. Several aided-phytostabilisation options were in situ evaluated in lysimeters at a Cu-contaminated wood preservation site to assess the potential of four amendments to sorb Cu in a CW substrate. Concentrations of potentially toxic trace elements (PTTE, including Cu) and macronutrients of leachates migrating from the root zone to the aquifers were quantified. Based on the responses of Lemna minor L. used as a bioindicator, exposed to the leachates,.Linz-Donawitz slag spiked with P (LDS, 1%) best performed to sorb labile Cu in the root zone. In parallel, macrophyte communities were monitored along the Jalle Eysines River, an urban river slightly contaminated by Cu and other PTTE. The PTTE concentrations were determined in the soil, water, soil pore water, and in the leaves of seven macrophyte species. A multivariate statistical model was developed based on the foliar PTTE concentrations for biomonitoring macrophyte exposures. Populations of macrophytes were also collected in wetlands displaying an increasing Cu contamination in Europe (France, Spain, Portugal, and Italy), Belarus and Australia. Root production of macrophytes exposed for 3 weeks at increasing Cu concentrations (0.08, 2.5, 5, 15 and 25 µM Cu) shows an intra-specific variability of Cu tolerance in populations of Juncus effusus, Schoenoplectus lacustris and Phalaris arundinacea. In contrast, a similar response to constitutive tolerance occurred for Typha latifolia and Iris pseudacorus, two species with high production of rhizomes. The rhizome influence is discussed. Phragmites australis also produces rhizomes but showed intra-specific variability in response to Cu exposure. In a CW at mesocosm scale (110 dm3), up to 99% of Cu in water (initial concentration: 2.5μM Cu) was removed after 2 weeks in the three modalities planted with Juncus articulatus, P. arundinacea and P. australis, and in the unplanted control. The influences of microbial biofilms, the substrate, and the macrophyte species and their interactions in CW are discussed. The selection of PTTE-tolerant macrophytes for their used in CW and the understanding of molecular mechanisms underlying the intra-specific variability in PTTE- tolerance, i.e for P. australis, require further investigations

    Phytoremediation of Cu contaminated waters in constructed wetlands

    No full text
    Ces travaux contribuent à caractériser des compartiments environnementaux (i.e. eau, sol et solution du sol, substrat, macrophytes à l’échelle individuelle et des communautés) et leur fonctionnement pour in fine améliorer l’efficacité de zones humides construites (CW) à décontaminer une masse d’eau contaminée en cuivre. Les connaissances sur le maintien de l’homéostasie de Cu chez les végétaux ainsi que sa phytotoxicité aux expositions élevées sont résumées. Les principaux mécanismes physico-chimiques et biologiques intervenant en phytoremédiation d’eaux contaminées en Cu en CW sont également discutés. Plusieurs solutions de phytoremédiation de type phytostabilisation aidée ont été évaluées en lysimètres in situ sur un site de traitement du bois contaminé au Cu, afin d’établir le potentiel de certains amendements à sorber Cu dans le substrat des CW. Les concentrations en éléments traces potentiellement toxiques (PTTE, dont Cu) et macroéléments des lixiviats migrants vers les horizons aquifères ont été quantifiées. Un laitier sidérurgique de type Linz-Donawitz enrichi en P (LDS, 1%) a permis le meilleur développement de Lemna minor L., utilisé ici comme bioindicateur, exposée aux lixiviats. En parallèle, les communautés de macrophytes ont été suivies le long du parcours de la Jalle d’Eysines, une rivière urbaine contaminée en Cu et autres PTTE. Les concentrations en PTTE ont été déterminées dans le sol, l’eau, l’eau interstitielle et les feuilles de 7 espèces de macrophytes. Un modèle statistique multivarié (analyse discriminante linéaire, LDA) a ensuite été élaboré sur la base des concentrations foliaires en PTTE pour biosurveiller l’exposition des macrophytes. Des populations de macrophytes ont aussi été prélevées sur des zones humides de contamination croissante en Cu en Europe (France, Espagne, Portugal et Italie), Biélorussie et Australie. La production de racines chez les macrophytes exposées pendant 3 semaines à des concentrations croissantes en Cu (0,08 ; 2,5 ; 5 ; 15 et 25 µM Cu) montre une variabilité intra-spécifique de la tolérance au Cu pour des populations de Juncus effusus, Schoenoplectus lacustris et Phalaris arundinacea. A l’inverse, une réponse similaire à une tolérance constitutive a été obtenue chez Typha latifolia et Iris pseudacorus, deux espèces à forte production de rhizomes. L’importance des rhizomes est discutée. Phragmites australis produit également des rhizomes, mais a présenté une variabilité intra-spécifique dans sa production racinaire en réponse à une exposition au Cu. En CW, à l’échelle du mésocosme (110 dm3), jusqu’à 99% du Cu de la masse d’eau (concentration initiale: 2.5µM Cu) ont été éliminés dans les trois modalités plantées de Juncus articulatus, P. arundinacea et P. australis, ainsi que dans le contrôle non planté. Les rôles du biofilm microbien, du substrat et des macrophytes en CW ainsi que leurs interactions sont discutés. La sélection d’écotypes de macrophytes tolérants aux PTTE pour leur utilisation en zone humide construite ainsi que les mécanismes moléculaires impliqués dans la variabilité intra-spécifique de cette tolérance, notamment chez P. australis, sont deux thèmes de recherche à promouvoir.This work aims at characterizing environmental compartments (i.e. water, soil and soil pore water, substrate, macrophytes at the individual and community scale) and their functioning to in fine improve the effectiveness of constructed wetlands (CW) for cleaning Cu-contaminated waters. Knowledge on the homeostasis of Cu in plants and its phytotoxicity at medium and high exposures are summarized. The main physico-chemical and biological mechanisms involved in the phytoremediation of Cu-contaminated water in CW are discussed. Several aided-phytostabilisation options were in situ evaluated in lysimeters at a Cu-contaminated wood preservation site to assess the potential of four amendments to sorb Cu in a CW substrate. Concentrations of potentially toxic trace elements (PTTE, including Cu) and macronutrients of leachates migrating from the root zone to the aquifers were quantified. Based on the responses of Lemna minor L. used as a bioindicator exposed to the leachates, Linz-Donawitz slag spiked with P (LDS, 1%) best performed to sorb labile Cu in the root zone. In parallel, macrophyte communities were monitored along the Jalle Eysines River, an urban river slightly contaminated by Cu and other PTTE. The PTTE concentrations were determined in the soil, water, soil pore water, and in the leaves of seven macrophyte species. A multivariate statistical model was developed based on the foliar PTTE concentrations for biomonitoring macrophyte exposures. Populations of macrophytes were also collected in wetlands displaying an increasing Cu contamination in Europe (France, Spain, Portugal, and Italy), Belarus and Australia. Root production of macrophytes exposed for 3 weeks at increasing Cu concentrations (0.08, 2.5, 5, 15 and 25 µM Cu) shows an intra-specific variability of Cu tolerance in populations of Juncus effusus, Schoenoplectus lacustris and Phalaris arundinacea. In contrast, a similar response to constitutive tolerance occurred for Typha latifolia and Iris pseudacorus, two species with high production of rhizomes. The rhizome influence is discussed. Phragmites australis also produces rhizomes but showed intra-specific variability in response to Cu exposure. In a CW at mesocosm scale (110 dm3), up to 99% of Cu in water (initial concentration: 2.5μM Cu) was removed after 2 weeks in the three modalities planted with Juncus articulatus, P. arundinacea and P. australis, and in the unplanted control. The influences of microbial biofilms, the substrate, and the macrophyte species and their interactions in CW are discussed. The selection of PTTE-tolerant macrophytes for their used in CW and the understanding of molecular mechanisms underlying the intra-specific variability in PTTE- tolerance, i.e for P. australis, require further investigations
    corecore