6,541 research outputs found

    Entanglement universality of two-qubit X-states

    Get PDF
    We demonstrate that for every two-qubit state there is a X-counterpart, i.e., a corresponding two-qubit X-state of same spectrum and entanglement, as measured by concurrence, negativity or relative entropy of entanglement. By parametrizing the set of two-qubit X-states and a family of unitary transformations that preserve the sparse structure of a two-qubit X-state density matrix, we obtain the parametric form of a unitary transformation that converts arbitrary two-qubit states into their X-counterparts. Moreover, we provide a semi-analytic prescription on how to set the parameters of this unitary transformation in order to preserve concurrence or negativity. We also explicitly construct a set of X-state density matrices, parametrized by their purity and concurrence, whose elements are in one-to-one correspondence with the points of the concurrence versus purity (CP) diagram for generic two-qubit states.Comment: 24 pages, 6 figures. v2 includes new references and minor changes (accepted version

    Heuristic for estimation of multiqubit genuine multipartite entanglement

    Full text link
    For every N-qubit density matrix written in the computational basis, an associated "X-density matrix" can be obtained by vanishing all entries out of the main- and anti-diagonals. It is very simple to compute the genuine multipartite (GM) concurrence of this associated N-qubit X-state, which, moreover, lower bounds the GM-concurrence of the original (non-X) state. In this paper, we rely on these facts to introduce and benchmark a heuristic for estimating the GM-concurrence of an arbitrary multiqubit mixed state. By explicitly considering two classes of mixed states, we illustrate that our estimates are usually very close to the standard lower bound on the GM-concurrence, being significantly easier to compute. In addition, while evaluating the performance of our proposed heuristic, we provide the first characterization of GM-entanglement in the steady states of the driven Dicke model at zero temperature.Comment: 19 pages, 5 figure

    A Verilog HDL digital architecture for delay calculation

    Get PDF
    A method for the calculation of the delay between two digital signals with central frequencies in the range [20, 300] Hz is presented. The method performs a delay calculation in order to determine the bearing angle of a sound source. Computing accuracy is tested against a previous implementation of the Cross Correlation Derivative method. A Verilog RTL model of the method has been tested on a Xilinx® FPGA in order to evaluate the real performance of the method. Simulations of an ASIC design on a standard CMOS technology predict a power saving of about 25 times per delay stage over previous implementations.Fil: Chacón-Rodríguez, A.. Universidad de Mar del Plata. Laboratorio de Componentes Electrónicos; ArgentinaFil: Martín-Pirchio, F. N.. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Julian, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Mandolesi, Pablo Sergio. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentin

    The Cochlear Tuning Curve

    Get PDF
    The tuning curve of the cochlea measures how large an input is required to elicit a given output level as a function of the frequency. It is a fundamental object of auditory theory, for it summarizes how to infer what a sound was on the basis of the cochlear output. A simple model is presented showing that only two elements are sufficient for establishing the cochlear tuning curve: a broadly tuned traveling wave, moving unidirectionally from high to low frequencies, and a set of mechanosensors poised at the threshold of an oscillatory (Hopf) instability. These two components suffice to generate the various frequency-response regimes which are needed for a cochlear tuning curve with a high slope
    • …
    corecore