23,108 research outputs found

    Rainbow metric formalism and Relative Locality

    Full text link
    This proceeding is based on a talk prepared for the XIII Marcell Grossmann meeting. We summarise some results of work in progress in collaboration with Giovanni Amelino-Camelia about momentum dependent (Rainbow) metrics in a Relative Locality framework and we show that this formalism is equivalent to the Hamiltonian formalization of Relative Locality obtained in arXiv:1102.4637.Comment: appears in Proceedings of the 13th Marcell Grossmann meeting on General Relativity, World Scientific, Singapore, (2014

    Simple Models for Turbulent Self-Regulation in Galaxy Disks

    Get PDF
    We propose that turbulent heating, wave pressure and gas exchanges between different regions of disks play a dominant role in determining the preferred, quasi-equilibrium, self-similar states of gas disks on large-scales. We present simple families of analytic, thermohydrodynamic models for these global states, which include terms for turbulent pressure and Reynolds stresses. Star formation rates, phase balances, and hydrodynamic forces are all tightly coupled and balanced. The models have stratified radial flows, with the cold gas slowly flowing inward in the midplane of the disk, and with the warm/hot phases that surround the midplane flowing outward. The models suggest a number of results that are in accord with observation, as well as some novel predictions, including the following. 1) The large-scale gas density and thermal phase distributions in galaxy disks can be explained as the result of turbulent heating and spatial couplings. 2) The turbulent pressures and stresses that drive radial outflows in the warm gas also allow a reduced circular velocity there. This effect was observed by Swaters, Sancisi and van der Hulst in NGC 891, a particularly turbulent edge-on disk. The models predict that the effect should be universal in such disks. 3) They suggest that a star formation rate like the phenomenological Schmidt Law is the natural result of global thermohydrodynamical balance, and may not obtain in disks far from equilibrium. (Abridged)Comment: 37 pages, 1 gif figure, accepted for publication in the Astrophysical Journa

    Method and apparatus for preparing multiconductor cable with flat conductors

    Get PDF
    A method and apparatus for preparing flat conductor cable having a plurality of ribbon-like conductors disposed upon and adhesively bonded to the surface of a substrate is described. The conductors are brought into contact with the substrate surface, and while maintained in axial tension on said substrate, the combination is seated on a yieldably compressible layer to permit the conductor to become embedded into the surface of the substrate film

    Atomic Hydrogen and Star Formation in the Bridge/Ring Interacting Galaxy Pair NGC 7714/7715 (Arp 284)

    Get PDF
    We present high spatial resolution 21 cm HI maps of the interacting galaxy pair NGC 7714/7715. We detect a massive (2 x 10**9 M(sun)) HI bridge connecting the galaxies that is parallel to but offset from the stellar bridge. A chain of HII regions traces the gaseous bridge, with H-alpha peaks near but not on the HI maxima. An HI tidal tail is also detected to the east of the smaller galaxy NGC 7715, similarly offset from a stellar tail. The strong partial stellar ring on the eastern side of NGC 7714 has no HI counterpart, but on the opposite side of NGC 7714 there is a 10**9 M(sun) HI loop 11 kpc in radius. Within the NGC 7714 disk, clumpy HI gas is observed associated with star formation regions. Redshifted HI absorption is detected towards the starburst nucleus. We compare the observed morphology and gas kinematics with gas dynamical models in which a low-mass companion has an off-center prograde collision with the outer disk of a larger galaxy. These simulations suggest that the bridge in NGC 7714/7715 is a hybrid between bridges seen in systems like M51 and the purely gaseous `splash' bridges found in ring galaxies like the Cartwheel. The offset between the stars and gas in the bridge may be due to dissipative cloud-cloud collisions occuring during the impact of the two gaseous disks.Comment: 31 pages, Latex, 11 figures, to be published in the July 10, 1997 issue of the Astrophysical Journa

    The Theoretical Substantiation of Cost Accounting in the Light of Conflicting Approaches

    Get PDF
    Desde hace algunos años se viene sosteniendo en Alemania una discusión acerca de la fundamentación teórica de la contabilidad de costes, así como de la necesidad de mantener un sistema de costes independiente. El abanico de planteamientos posibles abarca desde la total integración de la contabilidad de costes en la contabili-dad externa hasta el de una separación lo más completa posible de ambos sistema contables. Esta aportación pre-tende presentar, desde el punto de vista alemán, cómo se ha desarrollado la discusión y cuál es la situación ac-tual. Como conclusión del trabajo se aboga por una separación, sustentada teóricamente, entre ambos sistemas de contabilidad. In Germany, a discussion has been in progress for a number of years on the theoretical substantiation and the necessity of an independent cost accounting system. The spectrum of views involved ranges from a complete integration of cost accounting (internal income statement) into the profit and loss statement (external income statement) to as complete a separation as possible of the two income accounting systems. This contribu-tion will represent, from a German standpoint, how the discussion has developed, and what its present state is. The conclusion of this contribution is a recommendation of a theoretically substantiated separation of the two types of income statements.Contabilidad de costes, fundamentación teórica, independencia de la contabilidad externa, Alemania. Cost accounting, theoretical substantiation, independent cost accounting system, Germany.

    Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles

    Get PDF
    Peatlands encode information about past vegetation dynamics, climate, and microbial processes. Here, we used δ15N and δ13C patterns from 16 peat profiles to deduce how the biogeochemistry of the Marcell S1 forested bog in northern Minnesota responded to environmental and vegetation change over the past  ∼ 10000 years. In multiple regression analyses, δ15N and δ13C correlated strongly with depth, plot location, C∕N, %N, and each other. Correlations with %N, %C, C∕N, and the other isotope accounted for 80% of variance for δ15N and 38% of variance for δ13C, reflecting N and C losses. In contrast, correlations with depth and topography (hummock or hollow) reflected peatland successional history and climate. Higher δ15N in plots closer to uplands may reflect upland-derived DON inputs and accompanying shifts in N dynamics in the lagg drainage area surrounding the bog. The Suess effect (declining δ13CO2 since the Industrial Revolution) lowered δ13C in recent surficial samples. High δ15N from −35 to −55cm probably indicated the depth of ectomycorrhizal activity after tree colonization of the peatland over the last 400 years, as confirmed by the occasional presence of wood down to −35cm depth. High δ13C at  ∼ 4000 years BP (−65 to −105cm) could reflect a transition at that time to slower rates of peat accumulation, when 13C discrimination during peat decomposition may increase in importance. Low δ13C and high δ15N at −213 and −225cm ( ∼ 8500 years BP) corresponded to a warm period during a sedge-dominated rich fen stage. The above processes appear to be the primary drivers of the observed isotopic patterns, whereas there was no clear evidence for methane dynamics influencing δ13C patterns

    Galaxy Collisions - Dawn of a New Era

    Full text link
    The study of colliding galaxies has progressed rapidly in the last few years, driven by observations with powerful new ground and space-based instruments. These instruments have used for detailed studies of specific nearby systems, statistical studies of large samples of relatively nearby systems, and increasingly large samples of high redshift systems. Following a brief summary of the historical context, this review attempts to integrate these studies to address the following key issues. What role do collisions play in galaxy evolution, and how can recently discovered processes like downsizing resolve some apparently contradictory results of high redshift studies? What is the role of environment in galaxy collisions? How is star formation and nuclear activity orchestrated by the large scale dynamics, before and during merger? Are novel modes of star formation involved? What are we to make of the association of ultraluminous X-ray sources with colliding galaxies? To what do degree do mergers and feedback trigger long-term secular effects? How far can we push the archaeology of individual systems to determine the nature of precursor systems and the precise effect of the interaction? Tentative answers to many of these questions have been suggested, and the prospects for answering most of them in the next few decades are good.Comment: 44 pages, 9 figures, review article in press for Astrophysics Update Vol.

    Sharing Risks, Restoring Trust

    Get PDF
    1noopenopenMessori, M.Messori, Marcell
    corecore