We propose that turbulent heating, wave pressure and gas exchanges between
different regions of disks play a dominant role in determining the preferred,
quasi-equilibrium, self-similar states of gas disks on large-scales. We present
simple families of analytic, thermohydrodynamic models for these global states,
which include terms for turbulent pressure and Reynolds stresses. Star
formation rates, phase balances, and hydrodynamic forces are all tightly
coupled and balanced. The models have stratified radial flows, with the cold
gas slowly flowing inward in the midplane of the disk, and with the warm/hot
phases that surround the midplane flowing outward.
The models suggest a number of results that are in accord with observation,
as well as some novel predictions, including the following. 1) The large-scale
gas density and thermal phase distributions in galaxy disks can be explained as
the result of turbulent heating and spatial couplings. 2) The turbulent
pressures and stresses that drive radial outflows in the warm gas also allow a
reduced circular velocity there. This effect was observed by Swaters, Sancisi
and van der Hulst in NGC 891, a particularly turbulent edge-on disk. The models
predict that the effect should be universal in such disks. 3) They suggest that
a star formation rate like the phenomenological Schmidt Law is the natural
result of global thermohydrodynamical balance, and may not obtain in disks far
from equilibrium. (Abridged)Comment: 37 pages, 1 gif figure, accepted for publication in the Astrophysical
Journa