9 research outputs found

    Efeito do consumo de Tucum-do-cerrado (Bactris setosa Mart) em marcadores de envelhecimento em ratos adultos suplementados com ferro

    Get PDF
    Tese (doutorado)—Universidade de Brasília, Faculdade de Ciências da Saúde, Programa de Pós Graduação em Nutrição Humana, 2017.Texto parcialmente liberado pelo autor. Conteúdo restrito: Capítulo 2.Nas últimas décadas houve um aumento do número de indivíduos idosos na população mundial, sendo necessário o contínuo desenvolvimento de pesquisas e políticas que promovam um envelhecimento saudável. O envelhecimento é um processo biológico caracterizado pelo predomínio de um estado pró-oxidante e pró-inflamatório, associado a menor eficiência das respostas antioxidantes e anti-inflamatórias. Alguns componentes dietéticos, como o ferro e os compostos fitoquímicos, podem alterar as respostas redox e imune e, consequentemente, modular o processo de envelhecimento. Desse modo, considerando que o tucum-do-cerrado (Bactris setosa Mart.) é um fruto do cerrado brasileiro rico em compostos fitoquímicos e com alto potencial antioxidante in vitro e in vivo, o presente estudo avaliou o efeito do consumo de tucum-do-cerrado nos marcadores moleculares associados ao envelhecimento, em ratos adultos suplementados ou não com ferro dietético. Métodos Trinta e dois ratos Wistar machos, adultos, foram tratados por 12 semanas com uma das seguintes dietas: dieta controle (CT; AIN-93G); dieta enriquecida com ferro (+Fe); dieta adicionada de 15% de tucum-do-cerrado (Tuc) ou dieta adicionada de 15% de tucum-do-cerrado e enriquecida com ferro (Tuc+Fe). A concentração de ferro nos tecidos foi determinada por espectrofotometria de emissão atômica e os parâmetros séricos de ferro utilizando kits comerciais. Os níveis de malondialdeído e proteínas carboniladas foram determinados no fígado, baço, intestino e rim e as atividades das enzimas antioxidantes foram determinadas no fígado e no rim, por espectrofotometria. As concentrações séricas de interleucina (IL)-1β, IL-6 e fator de fator de necrose tumoral-alfa (TNF-) foram determinadas por ELISA. Os níveis de mRNA da hepcidina (Hamp), do fator nuclear eritroide 2 relacionado ao fator 2 (Nfe2l2), da NAD(P)H: desidrogenase-(quinona)1 (Nqo1), da heme oxigenase 1(Hmox1), da interleucina 1-beta (Il1b), do fator de necrose tumoral-alfa (Tnfa), da proteína marcadora de senescência 30 (Smp30), da sirtuína 1 (Sirt1) e Sirt3 foram determinados no fígado e / ou rim, utilizando o sistema de reação da polimerase em cadeia em tempo real (qPCR). Os níveis da proteína Nrf2 no fígado, assim como das proteínas SIRT1 e SIRT3 no fígado e no rim, foram determinados por Western Blotting. As comparações entre os tratamentos foram feitas utilizando teste de comparações múltiplas (ANOVA) com correção de Bonferroni, sendo considerado estatisticamente diferente o valor de p < 0,05. Resultados O consumo da dieta enriquecida com ferro (+Fe) promoveu o aumento da concentração de ferro nos tecidos, dos parâmetros séricos de ferro; no fígado, aumentou os danos oxidativos a proteínas, a atividade de superóxido dismutase (SOD), o nível da proteína Nrf2, os níveis de mRNA da Hamp e da Nqo1 e os níveis séricos de IL-6 e TNF-α; além de ter reduzido os níveis de mRNA da Sirt1 no rim, comparados ao grupo CT. Os ratos tratados com dieta adicionada de tucum-do-cerrado (Tuc) apresentaram redução dos níveis de mRNA hepático da Hamp; aumento da atividade de SOD, dos níveis hepáticos de mRNA da Nfe2l2, Nqo1 e Sirt1, e das proteínas Nrf2 e SIRT1 no fígado, comparados ao CT. A associação de tucum-do-cerrado e ferro na dieta (Tuc+Fe) promoveu a redução dos níveis de mRNA da Hamp no fígado, apesar de não ter alterado o status de ferro, quando comparado ao grupo +Fe. No grupo Tuc+Fe foi observado ainda uma redução dos danos oxidativos a proteínas no fígado e de lipídios no rim, e uma redução marginal dos níveis séricos de IL-6, em relação ao grupo +Fe, bem como um aumento marginal da atividade de SOD no fígado, dos níveis hepáticos de mRNA e proteína da Nrf2, de mRNA da Nqo1 e da proteína SIRT1, em relação ao grupo CT; também apresentaram aumento de mRNA da Sirt1 no rim, em relação ao grupo +Fe. Conclusão Os resultados sugerem que o consumo de tucum-do-cerrado pode promover um efeito antienvelhecimento ativando a via relacionada à SIRT1-Nrf2, a qual atenua o processo oxidativo e inflamatório induzido pelo excesso de ferro.In the last decades, the number of older people has increased worldwide. Therefore, the continuous development of researches and policies are necessary in an attempt to promote a healthier aging. Aging is a biological process characterized by an increased pro-oxidant and proinflammatory state, associated with inefficient antioxidant and anti-inflammatory responses. Some dietary components, such as iron and phytochemicals compounds, modulate both the redox and imune responses and, consequently, may modulate the aging process. Considering that tucum-do-cerrado (Bactris setosa Mart.) is a Brazilian savanna fruit rich in phytochemical compounds with a high antioxidant potential in vitro and in vivo, the present study investigated the effect of tucum-do-cerrado consumption on molecular markers associated with aging, in adult rats supplemented or not with dietary iron. Methods Thirty-two male adult Wistar rats were treated for 12 weeks with one of the following diets: control diet (CT, AIN-93G), iron-enriched diet (+ Fe), control diet + 15% tucum-do-cerrado (Tuc) or iron enriched-diet + 15% tucum-do-cerrado (Tuc+Fe). Total iron concentration in tissues was determined by atomic emission spectroscopy and the serum iron parameters were determined using commercial kits. Malondialdehyde and carbonyl protein levels were determined in the liver, spleen, intestine and kidney, and the activity of antioxidant enzymes were determined in the liver and kidney, using spectrophotometry. The serum concentration of the interleukins (IL)-1β, IL-6 and tumor necrosis factor-alpha (TNF-) were determined by ELISA. The mRNA levels of hepcidin (Hamp), nuclear factor erythroid 2–related factor 2 (Nfe2l2), NAD(P)H:dehydrogenase- (quinone) 1 (Nqo1), heme oxygenase-1 (Hmox1), interleukin 1-beta (Il1b), factor, tumor necrosis factor-alpha (Tnfa), senescence marker protein 30 (Smp30), sirtuin 1 (Sirt1) and Sirt3 were determined in the liver and / or kidney by the reverse transcription-polymerase chain reaction analysis (qPCR). Protein levels of Nrf2 in the liver, as well as the proteins levels of SIRT1 and SIRT3 in the liver and in the kidney, were determined by Western Blotting. The comparisons among the treatments were done using the multiple comparison test (ANOVA) with Bonferroni correction, and a value of p < 0.05 was considered statistically significant. Results The consumption of the iron enriched-diet (+Fe) promoted an increase of iron concentration in the analyzed tissues and in the serum iron parameters. In the liver, +Fe group showed an increase of protein oxidative damages, superoxide dismutase activity (SOD), Nrf2 protein levels and mRNA levels of Hamp and Nqo1, and IL-6 and TNF-α serum levels; and a decrease in Sirt1 mRNA levels in the kidney, compared with the CT group. The animals treated with the tucum-do-cerrado diet (Tuc) presented lower levels of hepatic Hamp mRNA levels; higher levels of SOD activity, hepatic mRNA levels of Nfe2l2, Nqo1 and Sirt1, and hepatic protein levels of Nrf2 and SIRT1, compared with the CT group. The association of tucum-do-cerrado with iron supplementation (Tuc+Fe) promoted a reduction of hepatic Hamp mRNA levels, but no difference was observed in iron status compared to the +Fe group. In Tuc+Fe group, it has been observed a reduction in oxidative damages to hepatic protein and renal lipids, and a marginal reduction in serum IL-6 levels, compared to the +Fe group, as well as a marginally increased hepatic SOD activity, higher mRNA and protein levels of Nrf2, Nqo1 mRNA and SIRT1 protein levels, in relation to the CT group; and also, an increase of the Sirt1 mRNA levels in the kidney, compared to the +Fe group. Conclusion These results suggested that tucum-do-cerrado might promote healthier aging by increasing SIRT1 expression and consequently partially activating Nrf2-related pathway, which attenuates oxidative and inflammatory responses

    A deficiência de vitamina A modula o metabolismo de ferro via eritropoiese ineficaz de forma independente da resposta inflamatória

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Faculdade de Ciências da Saúde, Departamento de Nutrição, Programa de Pós-Graduação em Nutrição Humana, 2013.Introdução A vitamina A em suas diferentes formas, os retinoides, regulam a expressão de diversos genes, incluindo genes relacionados à diferenciação celular e à resposta anti-inflamatória. Além disso, os metabolismos da vitamina A e do ferro estão relacionados por um mecanismo ainda não esclarecido, mas sugere-se que a vitamina A module os níveis de mRNA de Hamp, que codifica o hormônio hepcidina, peptídeo central na regulação sistêmica de ferro. Considerando que a expressão de hepcidina é regulada por diversos fatores, incluindo o status de ferro, a eritropoiese e a inflamação e que a vitamina A pode modular o estado inflamatório e o metabolismo de ferro, o presente estudo investigou o efeito da deficiência de vitamina A nos biomarcadores moleculares do metabolismo de ferro e da resposta inflamatória e a expressão dos genes envolvidos nestes sistemas. Métodos Trinta ratos Wistar machos foram tratados por 59 dias com uma das seguintes dietas: dieta Controle; dieta deficiente em vitamina A (VAD); dieta deficiente em ferro (FeD); dieta deficiente em vitamina A e ferro (VAFeD) e dieta todo-trans ácido retinoico (atRA). O fígado, o baço, o intestino, o coração e o rim foram removidos para determinação dos níveis de mRNA de: hepcidina e supressor da sinalização de citocinas 3, no fígado; de heme oxigenase-1, interleucina-6 (IL-6) e interleucina-1β (IL-1β) no fígado e no baço; de eritropoietina no rim e de ferroportina no baço, por sistema de reação da polimerase em cadeia em tempo-real (qPCR). A concentração de ferro nos cinco tecidos estudados foi determinada por espectroscopia de emissão atômica e os parâmetros de ferro sérico foram determinados utilizando kits comerciais. A concentração sérica de IL-6 e IL-1β foi determinada por ELISA e a atividade específica de heme oxigenase-1 foi avaliada por espectrofotometria. As comparações entre os grupos de tratamento foram realizadas utilizando teste t-student para amostras independentes e o valor de p < 0,05 foi considerado estatisticamente diferente. Resultados A deficiência de vitamina A (VAD) causou diminuição dos parâmetros séricos de ferro; aumentou a concentração de ferro no baço, os níveis de mRNA de IL-6 no fígado e a concentração sérica de IL-6 e IL-1β; observou-se também redução dos níveis de mRNA de hepcidina hepática e de eritropoietina renal, aumento dos níveis de mRNA de ferroportina no baço e de heme-oxigenase 1 no fígado e no baço, enquanto observou-se redução na atividade específica de heme oxigenase-1, comparado aos ratos Controle. Os ratos deficientes em ferro (FeD) apresentaram redução dos parâmetros séricos de ferro com concomitante redução da concentração de ferro nos cinco tecidos estudados; também apresentaram aumento dos níveis de mRNA de IL-6 no fígado e da concentração sérica de proteína de IL-6 e IL-1β, enquanto apresentaram diminuição dos níveis de mRNA de hepcidina, em relação ao grupo Controle. A associação das deficiências de vitamina A e ferro (VAFeD) também reduziu os parâmetros séricos de ferro e a concentração de ferro nos tecidos, comparado ao Controle, enquanto provocou aumento da concentração sérica de proteína IL-6, diminuição dos níveis de mRNA de hepcidina hepática. A utilização do todo-trans ácido retinoico (atRA) como fonte de vitamina A resultou na diminução de ferro sérico e concentração de transferrina; aumento da concentração de ferro no fígado, diminuição dos níveis de ferro no baço e no intestino, aumento dos níveis séricos de proteína de IL-6 e IL-1β e diminuição do mRNA de hepcidina hepática, em relação ao grupo Controle. Conclusão Os resultados sugerem que a deficiência de vitamina A causa uma eritropoiese ineficaz, pela diminuição dos níveis de mRNA de eritropoietina renal, levando a má-formação de eritrócitos e consequente acúmulo de grupo heme no baço desses ratos. O grupo heme retido no baço e no fígado leva a uma deficiência sistêmica de ferro nos organismos deficiente em vitamina A. Portanto a deficiência de vitamina A modula indiretamente a homeostase sistêmica de ferro por aumentar a fagocitose de eritrócitos indiferenciados. ___________________________________________________________________________________________ ABSTRACTIntroduction The vitamin A in its various forms, the retinoids, regulate the expression of various genes, including genes related to cell differentiation and anti-inflammatory response. Furthermore, the metabolism of iron and vitamin A are interconected by a mechanism that remains not elucidated, but it is suggested that vitamin A modulates Hamp mRNA levels, which encodes the hormone hepcidin, peptide that is central in the systemic regulation of iron metabolism. Whereas the expression of hepcidin is regulated by several factors, including iron status, erythropoiesis and inflammation and that vitamin A may modulate the inflammatory status and iron metabolism, the present study investigated the effect of vitamin A deficiency in molecular biomarkers of iron metabolism and inflammatory response and the expression of the genes involved in these systems. Methods Thirty male Wistar rats were treated for 59 days with one of the following diets: Control diet; vitamin A deficient diet (VAD); iron deficient diet (FeD); vitamin A and iron deficient diet (VAFeD) and the all-trans retinoic acid diet (atRA). The liver, spleen, gut, heart and kidney were excised to determine the mRNA levels of hepcidin and suppressor of cytokine signaling 3 in liver; heme oxigenase-1, interleukin-6 (IL-6) and interleukin-1β (IL-1β) mRNA levels in liver and spleen; mRNA levels of erythropoietin in kidney and ferroportin in spleen, by reverse transcription- polymerase chain reaction analysis (qPCR). Total iron concentration in the five studied tissues was determined by atomic emission spectrometer and serum iron parameters were determined using commercial kits. The serum concentration of IL-6 and IL-1β was quantified by ELISA assay, and heme oxygenase-1 specific activity was assessed by a colorimetric test. Comparisons among the test groups were done using independent sample test t-test and in all tests, a value of p < 0.05 was considered statistically significant. Results The vitamin A deficiency (VAD) reduced serum iron parameters, increased the iron concentration of in the spleen, the levels of IL-6 mRNA in liver and serum concentration of IL-6 and IL-1β; it was also observed a reduction in the mRNA levels of hepatic hepcidin and renal erythropoietin, an increase of mRNA levels of ferroportin in spleen, heme oxygenase-1 in liver and spleen, whereas there was a decrease in the specific activity of heme oxygenase-1 compared to Control rats. The rats iron deficient (FeD) showed decreased serum iron parameters with concomitant reduction of the iron concentration in the five tissues studied; it was observed an increase of IL-6 mRNA levels in liver and serum protein concentration of IL-6 and IL-1β, while showed decreased levels of hepcidin mRNA compared to Control group. The combination of vitamin A and iron deficiencies (VAFeD) also reduced the serum iron and its concentration in tissues, while caused an increase in serum IL-6 protein and decreased of hepatic hepcidin mRNA levels, compared to Control. The utilzation of all-trans retinoic acid (atRA) as a source of vitamin A resulted in a decrease in serum iron and transferrin concentration, an increase of iron concentration in the liver, reduction iron levels in the spleen and gut, an increase of IL-6 and IL-1β serum levels and a reduction of hepatic hepcidin mRNA, compared to Control group. Conclusion In summary, these results suggest that vitamin A deficiency leads to an ineffective erythropoiesis by the down-regulation of renal erythropoietin expression in kidney, resulting in erythrocytes malformation and consequent accumulation of heme group in the spleen. The heme group arrested in spleen and liver leads to a systemic iron deficiency in vitamin A deficient organism. In conclusion, vitamin A deficiency indirectly modulates systemic iron homeostasis by enhancing erythrophagocytosis of undifferentiated erythrocytes

    Tucum-do-Cerrado (Bactris setosa Mart.) May Promote Anti-Aging Effect by Upregulating SIRT1-Nrf2 Pathway and Attenuating Oxidative Stress and Inflammation

    No full text
    Aging may be related to oxidative damage accumulation and a low-grade inflammation, both responses are modulated by iron and phytochemicals. This study investigated the effect of tucum-do-cerrado (Bactris setosa Mart.) consumption on the expression of sirtuins (SIRT 1 and 3) and senescence marker protein-30 (SMP30), and on the redox and inflammatory responses, in adult rats supplemented or not with dietary iron. Male Wistar rats were treated for 12 weeks with: control diet (CT); iron enriched-diet (+Fe); control diet + 15% tucum-do-cerrado (Tuc); or iron enriched-diet + 15% tucum-do-cerrado (Tuc + Fe). Iron supplementation (+Fe) increased liver, spleen and intestine iron levels, transferrin saturation, serum iron, serum TNF-α and IL-6 levels, hepatic carbonyl content and and superoxide dismutase (SOD) activity, hepatic Nrf2 protein and Nqo1 mRNA levels and decreased the renal Sirt1 mRNA levels in relation to CT group. Tucum-do-cerrado consumption (Tuc) increased hepatic SOD activity, Nrf2 and SIRT1 mRNA and protein contents, and Nqo1 mRNA levels, while it decreased the renal SOD activity compared with the CT diet. The consumption of tucum-do-cerrado associated with the iron-enriched diet (Tuc + Fe) increased the iron levels in tissues and serum transferrin saturation, compared to the CT diet, while promoting a decrease in hepatic carbonyl and renal malondialdehyde levels, marginally reducing serum IL-6 levels, and increasing hepatic SIRT1 protein content, renal Sirt1 and hepatic Nrf2 mRNA levels, compared to the +Fe group. None of the treatments altered Smp30 mRNA levels. The results suggest that tucum-do-cerrado consumption might promote an anti-aging effect by increasing SIRT1 expression, which may enhance Nrf2 mRNA and protein levels and its downstream pathway, which in turn decrease oxidative damage to proteins and the levels of inflammatory cytokines (IL-6 and TNF-α), induced by iron excess

    Effect of vitamin A supplementation on iron status in humans: A systematic review and meta-analysis

    No full text
    <p>Anemia is a worldwide public health problem that can be related to many causes, including vitamin A deficiency. The aim of this study was to assess and estimate the effect of vitamin A supplementation (VAS) on iron status biomarkers and anemia in humans. Six databases, including Cochrane, EMBASE, LILACS, Pubmed, Scopus and Web of Science, were searched for clinical trials and cohort studies that investigated the effect of vitamin A supplementation alone on iron status and anemia, without time-restriction. The search yielded 23 eligible studies, 21 clinical trials and 2 cohort studies, with children, teenagers, pregnant or lactating women. The meta-analysis of the clinical trials showed that VAS reduces the risk of anemia by 26% and raises hemoglobin levels, compared to non-treated group, independent of the life stage. VAS did not alter the prevalence of iron deficiency among the clinical trials conducted with children and teenagers (RR 0.82, 95% CI 0.60 to 1.12, p = 0.204), whereas a significant increase in serum ferritin levels was observed in trials conducted with pregnant and lactating women (WMD 6.61 μg/L; 95% CI 6.00 to 7.21 μg/L; p < 0.001). Therefore, vitamin A supplementation alone may reduce the risk of anemia, by improving hemoglobin and ferritin levels in individuals with low serum retinol levels.</p

    Effect of vitamin A supplementation on iron status in humans: A systematic review and meta-analysis

    No full text
    <p>Anemia is a worldwide public health problem that can be related to many causes, including vitamin A deficiency. The aim of this study was to assess and estimate the effect of vitamin A supplementation (VAS) on iron status biomarkers and anemia in humans. Six databases, including Cochrane, EMBASE, LILACS, Pubmed, Scopus and Web of Science, were searched for clinical trials and cohort studies that investigated the effect of vitamin A supplementation alone on iron status and anemia, without time-restriction. The search yielded 23 eligible studies, 21 clinical trials and 2 cohort studies, with children, teenagers, pregnant or lactating women. The meta-analysis of the clinical trials showed that VAS reduces the risk of anemia by 26% and raises hemoglobin levels, compared to non-treated group, independent of the life stage. VAS did not alter the prevalence of iron deficiency among the clinical trials conducted with children and teenagers (RR 0.82, 95% CI 0.60 to 1.12, p = 0.204), whereas a significant increase in serum ferritin levels was observed in trials conducted with pregnant and lactating women (WMD 6.61 μg/L; 95% CI 6.00 to 7.21 μg/L; p < 0.001). Therefore, vitamin A supplementation alone may reduce the risk of anemia, by improving hemoglobin and ferritin levels in individuals with low serum retinol levels.</p

    The action of JAK/STAT3 and BMP/HJV/SMAD signaling pathways on hepcidin suppression by Tucum-do-Cerrado in a normal and iron-enriched diets

    Get PDF
    The Brazilian savanna fruit, tucum-do-cerrado (Bactris setosa Mart.) reduces hepatic hepcidin levels. Therefore, we investigated the effect of tucum-do-cerrado on the TfR/HFE and/or BMP/HJV/SMAD and JAK/STAT pathways, in normal and excess iron conditions. Rats were treated with: control diet (CT); control diet +15% tucum-do-cerrado (Tuc); iron-enriched diet (+Fe); or iron-enriched diet +15% tucum-do-cerrado (Tuc+Fe). Tucum-do-cerrado (Tuc) decreased hepatic Hamp and Hjv mRNA levels but did not alter Bmp6, Smad7, Tfr1, and Hfe mRNA levels; pSMAD1/5/8 and pSTAT3 protein levels; labile iron pool (LIP); and inflammatory biomarkers, compared to the CT group. The iron-enriched diet increased Hamp mRNA levels, as well as pSMAD1/5/8 and pSTAT3 protein levels, while no difference was observed in Hjv, Bmp6, Smad7, Tfr1, and Hfe mRNA levels and LIP compared to the CT group. The association of tucum-do-cerrado with the iron-enriched diet (Tuc+Fe) decreased Hamp, Hjv, Bmp6, and Hfe mRNA levels and pSTAT3 protein content compared to the +Fe group, while increased Hamp and decreased Hfe mRNA levels compared to the Tuc group. Therefore, the inhibition of hepatic hepcidin by tucum-do-cerrado consumption may involve the downregulation of intestinal Dmt1 and hepatic Hjv expression and deacetylation mediated by SIRT1 by a mechanism that is independent of tissue iron content. However, in excess iron conditions, the modulation of hepatic hepcidin expression by tucum-do-cerrado seems to be partially mediated by the inflammatory signaling pathway, as well as involves the chelating activity of tucum-do-cerrado

    Field and classroom initiatives for portable sequence-based monitoring of dengue virus in Brazil

    No full text
    This work was supported by Decit, SCTIE, Brazilian Ministry of Health, Conselho Nacional de Desenvolvimento Científico - CNPq (440685/ 2016-8, 440856/2016-7 and 421598/2018-2), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES - (88887.130716/2016-00), European Union’s Horizon 2020 Research and Innovation Programme under ZIKAlliance Grant Agreement (734548), STARBIOS (709517), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ (E-26/2002.930/2016), International Development Research Centre (IDRC) Canada (108411-001), European Union’s Horizon 2020 under grant agreements ZIKACTION (734857) and ZIKAPLAN (734548).Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil / Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil / Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Leônidas e Maria Deane. Laboratório de Ecologia de Doenças Transmissíveis na Amazônia. Manaus, AM, Brazil.Secretaria de Saúde do Estado de Mato Grosso do Sul. Laboratório Central de Saúde Pública. Campo Grande, MS, Brazil.Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Secretaria de Saúde do Estado da Bahia. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Dr. Milton Bezerra Sobral. Recife, PE, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso. Cuiabá, MT, Brazil.Laboratório Central de Saúde Pública do Distrito Federal. Brasília, DF, Brazil.Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Gorgas Memorial Institute for Health Studies. Panama, Panama.Universidade Federal da Bahia. Vitória da Conquista, BA, Brazil.Laboratorio Central de Salud Pública. Asunción, Paraguay.Fundação Oswaldo Cruz. Bio-Manguinhos. Rio de Janeiro, RJ, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, BrazilFundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, BrazilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso do Sul. Campo Grande, MS, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso do Sul. Campo Grande, MS, Brazil.Instituto de Investigaciones en Ciencias de la Salud. San Lorenzo, Paraguay.Secretaria de Estado de Saúde de Mato Grosso do Sul. Campo Grande, MS, Brazil.Fundação Oswaldo Cruz. Campo Grande, MS, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Dr. Milton Bezerra Sobral. Recife, PE, Brazil.Laboratório Central de Saúde Pública do Distrito Federal. Brasília, DF, Brazil.Secretaria de Saúde de Feira de Santana. Feira de Santana, Ba, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Secretaria de Saúde do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Hospital das Forças Armadas. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Universidade Nova de Lisboa. Instituto de Higiene e Medicina Tropical. Lisboa, Portugal.University of Sydney. School of Life and Environmental Sciences and School of Medical Sciences. Marie Bashir Institute for Infectious Diseases and Biosecurity. Sydney, NSW, Australia.University of KwaZulu-Natal. College of Health Sciences. KwaZulu-Natal Research Innovation and Sequencing Platform. Durban, South Africa.University of Oxford. Peter Medawar Building. Department of Zoology. Oxford, UK.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Universidade Estadual de Feira de Santana. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Universidade de Brasília. Brasília, DF, Brazil.Universidade Salvador. Salvador, BA, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hantaviroses e Rickettsioses. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Leônidas e Maria Deane. Laboratório de Ecologia de Doenças Transmissíveis na Amazônia. Manaus, AM, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Faculdade de Medicina Veterinária. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Faculdade de Medicina Veterinária. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública do Estado do Paraná. Curitiba, PR, Brazil.Laboratório Central de Saúde Pública do Estado de Rondônia. Porto Velho, RO, Brazil.Laboratório Central de Saúde Pública do Estado do Amazonas. Manaus, AM, Brazil.Laboratório Central de Saúde Pública do Estado do Rio Grande do Norte. Natal, RN, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso. Cuiabá, MT, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Noel Nutels. Rio de Janeiro, RJ, Brazil.Instituto Adolfo Lutz. São Paulo, SP, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.University of Oxford. Peter Medawar Building. Department of Zoology. Oxford, UK.Instituto Nacional de Enfermedades Virales Humanas Dr. Julio Maiztegui. Pergamino, Argentina.Gorgas Memorial Institute for Health Studies. Panama, Panama.Gorgas Memorial Institute for Health Studies. Panama, Panama.Gorgas Memorial Institute for Health Studies. Panama, Panama.Instituto de Salud Pública de Chile. Santiago, Chile.Instituto de Diagnóstico y Referencia Epidemiológicos Dr. Manuel Martínez Báez. Ciudad de México, México.Instituto Nacional de Enfermedades Infecciosas Dr Carlos G Malbrán. Buenos Aires, Argentina.Ministerio de Salud Pública de Uruguay. Montevideo, Uruguay.Instituto Costarricense de Investigación y Enseñanza em Nutrición y Salud. Tres Ríos, Costa Rica.Instituto Nacional de Investigacion en Salud Publica Dr Leopoldo Izquieta Pérez. Guayaquil, Ecuador.Instituto Nacional de Investigacion en Salud Publica Dr Leopoldo Izquieta Pérez. Guayaquil, Ecuador.Universidade Federal de Pernambuco. Recife, PE, Brazil.Secretaria de Saúde do Estado de Minas Gerais. Belo Horizonte. MG, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Secretaria de Saúde de Feira de Santana. Feira de Santana, BA, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Brazil experienced a large dengue virus (DENV) epidemic in 2019, highlighting a continuous struggle with effective control and public health preparedness. Using Oxford Nanopore sequencing, we led field and classroom initiatives for the monitoring of DENV in Brazil, generating 227 novel genome sequences of DENV1-2 from 85 municipalities (2015–2019). This equated to an over 50% increase in the number of DENV genomes from Brazil available in public databases. Using both phylogenetic and epidemiological models we retrospectively reconstructed the recent transmission history of DENV1-2. Phylogenetic analysis revealed complex patterns of transmission, with both lineage co-circulation and replacement. We identified two lineages within the DENV2 BR-4 clade, for which we estimated the effective reproduction number and pattern of seasonality. Overall, the surveillance outputs and training initiative described here serve as a proof-of-concept for the utility of real-time portable sequencing for research and local capacity building in the genomic surveillance of emerging viruses
    corecore