1,287 research outputs found

    Peroxidase Profiling Reveals Genetic Linkage between Peroxidase Gene Clusters and Basal Host and Non-Host Resistance to Rusts and Mildew in Barley

    Get PDF
    Background: Higher plants possess a large multigene family encoding secreted class III peroxidase (Prx) proteins. Peroxidases appear to be associated with plant disease resistance based on observations of induction during disease challenge and the presence or absence of isozymes in resistant vs susceptible varieties. Despite these associations, there is no evidence that allelic variation of peroxidases directly determines levels of disease resistance. Methodology/Principal Findings: The current study introduces a new strategy called Prx-Profiling. We showed that with this strategy a large number of peroxidase genes can be mapped on the barley genome. In order to obtain an estimate of the total number of Prx clusters we followed a re-sampling procedure, which indicated that the barley genome contains about 40 peroxidase gene clusters. We examined the association between the Prxs mapped and the QTLs for resistance of barley to homologous and heterologous rusts, and to the barley powdery mildew fungus. We report that 61 % of the QTLs for partial resistance to P. hordei, 61 % of the QTLs for resistance to B. graminis and 47 % of the QTLs for non-host resistance to other Puccinia species co-localize with Prx based markers. Conclusions/Significance: We conclude that Prx-Profiling was effective in finding the genetic location of Prx genes on the barley genome. The finding that QTLs for basal resistance to rusts and powdery mildew fungi tend to co-locate with Prx clusters provides a base for exploring the functional role of Prx-related genes in determining natural differences in levels o

    Anti-Trypanosomal Proteasome Inhibitors Cure Hemolymphatic and Meningoencephalic Murine Infection Models of African Trypanosomiasis

    Get PDF
    Current anti-trypanosomal therapies suffer from problems of longer treatment duration, toxicity and inadequate efficacy, hence there is a need for safer, more efficacious and 'easy to use' oral drugs. Previously, we reported the discovery of the triazolopyrimidine (TP) class as selective kinetoplastid proteasome inhibitors with in vivo efficacy in mouse models of leishmaniasis, Chagas Disease and African trypanosomiasis (HAT). For the treatment of HAT, development compounds need to have excellent penetration to the brain to cure the meningoencephalic stage of the disease. Here we describe detailed biological and pharmacological characterization of triazolopyrimidine compounds in HAT specific assays. The TP class of compounds showed single digit nanomolar potency against Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense strains. These compounds are trypanocidal with concentration-time dependent kill and achieved relapse-free cure in vitro. Two compounds, GNF6702 and a new analog NITD689, showed favorable in vivo pharmacokinetics and significant brain penetration, which enabled oral dosing. They also achieved complete cure in both hemolymphatic (blood) and meningoencephalic (brain) infection of human African trypanosomiasis mouse models. Mode of action studies on this series confirmed the 20S proteasome as the target in T. brucei. These proteasome inhibitors have the potential for further development into promising new treatment for human African trypanosomiasis

    Periostin Is Expressed by Pericytes and Is Crucial for Angiogenesis in Glioma

    Get PDF
    The expression of the matricellular protein periostin has been associated with glioma progression. In previous work we found an association of periostin with glioma angiogenesis. Here, we screen gliomas for POSTN expression and identify the cells that express periostin in human gliomas. In addition, we study the role of periostin in an in vitro model for angiogenesis. The expression of periostin was investigated by RT-PCR and by immunohistochemistry. In addition, we used double labeling and in situ RNA techniques to identify the expre

    Computational Identification of Novel Kir6 Channel Inhibitors

    Get PDF
    KATP channels consist of four Kir6.x pore–forming subunits and four regulatory sulfonylurea receptor (SUR) subunits. These channels couple the metabolic state of the cell to membrane excitability and play a key role in physiological processes such as insulin secretion in the pancreas, protection of cardiac muscle during ischemia and hypoxic vasodilation of arterial smooth muscle cells. Abnormal channel function resulting from inherited gain or loss-of-function mutations in either the Kir6.x and/or SUR subunits are associated with severe diseases such as neonatal diabetes, congenital hyperinsulinism, or Cantú syndrome (CS). CS is an ultra-rare genetic autosomal dominant disorder, caused by dominant gain-of-function mutations in SUR2A or Kir6.1 subunits. No specific pharmacotherapeutic treatment options are currently available for CS. Kir6 specific inhibitors could be beneficial for the development of novel drug therapies for CS, particular for mutations, which lack high affinity for sulfonylurea inhibitor glibenclamide. By applying a combination of computational methods including atomistic MD simulations, free energy calculations and pharmacophore modeling, we identified several novel Kir6.1 inhibitors, which might be possible candidates for drug repurposing. The in silico predictions were confirmed using inside/out patch-clamp analysis. Importantly, Cantú mutation C166S in Kir6.2 (equivalent to C176S in Kir6.1) and S1020P in SUR2A, retained high affinity toward the novel inhibitors. Summarizing, the inhibitors identified in this study might provide a starting point toward developing novel therapies for Cantú disease

    Evolution within a given virulence phenotype (pathotype) is driven by changes in aggressiveness: a case study of French wheat leaf rust populations

    Get PDF
    Plant pathogens are constantly evolving and adapting to their environment, including their host. Virulence alleles emerge, and then increase, and sometimes decrease in frequency within pathogen populations in response to the fluctuating selection pressures imposed by the deployment of resistance genes. In some cases, these strong selection pressures cannot fully explain the evolution observed in pathogen populations. A previous study on the French population of Puccinia triticina, the causal agent of wheat leaf rust, showed that two major pathotypes — groups of isolates with a particular combination of virulences — predominated but then declined over the 2005-2016 period. The relative dynamics and the domination of these two pathotypes — 166 317 0 and 106 314 0 —, relative to the other pathotypes present in the population at a low frequency although compatible, i.e. virulent on several varieties deployed, could not be explained solely by the frequency of Lr genes in the landscape. Within these two pathotypes, we identified two main genotypes that emerged in succession. We assessed three components of aggressiveness — infection efficiency, latency period and sporulation capacity — for 44 isolates representative of the four P. triticina pathotype-genotype combinations. We showed, for both pathotypes, that the more recent genotypes were more aggressive than the older ones. Our findings were highly consistent for the various components of aggressiveness for pathotype 166 317 0 grown on Michigan Amber — a ‘naive’ cultivar never grown in the landscape — or on Apache — a ‘neutral’ cultivar, which does not affect the pathotype frequency in the landscape and therefore was postulated to have no or minor selection effect on the population composition. For pathotype 106 314 0, the most recent genotype had a shorter latency period on several of the cultivars most frequently grown in the landscape, but not on ‘neutral’ and ‘naive’ cultivars. We conclude that the quantitative components of aggressiveness can be significant drivers of evolution in pathogen populations. A gain in aggressiveness stopped the decline in frequency of a pathotype, and subsequently allowed an increase in frequency of this pathotype in the pathogen population, providing evidence that adaptation to a changing varietal landscape not only affects virulence but can also lead to changes in aggressiveness

    Real-world use and outcomes of dolutegravir-containing antiretroviral therapy in HIV and tuberculosis co-infection: a site survey and cohort study in sub-Saharan Africa.

    Get PDF
    INTRODUCTION Dolutegravir is being scaled up globally as part of antiretroviral therapy (ART), but for people with HIV and tuberculosis co-infection, its use is complicated by a drug-drug interaction with rifampicin requiring an additional daily dose of dolutegravir. This represents a disadvantage over efavirenz, which does not have a major drug-drug interaction with rifampicin. We sought to describe HIV clinic practices for prescribing concomitant dolutegravir and rifampicin, and characterize virologic outcomes among patients with tuberculosis co-infection receiving dolutegravir or efavirenz. METHODS Within the four sub-Saharan Africa regions of the International epidemiology Databases to Evaluate AIDS consortium, we conducted a site survey (2021) and a cohort study (2015-2021). The cohort study used routine clinical data and included patients newly initiating or already receiving dolutegravir or efavirenz at the time of tuberculosis diagnosis. Patients were followed from tuberculosis diagnosis until viral suppression (<1000 copies/ml), a competing event (switching ART regimen; loss to program/death) or administrative censoring at 12 months. RESULTS In the survey, 86 of 90 (96%) HIV clinics in 18 countries reported prescribing dolutegravir to patients who were receiving rifampicin as part of tuberculosis treatment, with 77 (90%) reporting that they use twice-daily dosing of dolutegravir, of which 74 (96%) reported having 50 mg tablets available to accommodate twice-daily dosing. The cohort study included 3563 patients in 11 countries, with 67% newly or recently initiating ART. Among patients receiving dolutegravir (n = 465), the cumulative incidence of viral suppression was 58.9% (95% confidence interval [CI]: 54.3-63.3%), switching ART regimen was 4.1% (95% CI: 2.6-6.2%) and loss to program/death was 23.4% (95% CI: 19.7-27.4%). Patients receiving dolutegravir had improved viral suppression compared with patients receiving efavirenz who had a tuberculosis diagnosis before site dolutegravir availability (adjusted subdistribution hazard ratio [aSHR]: 1.47, 95% CI: 1.28-1.68) and after site dolutegravir availability (aSHR 1.28, 95% CI: 1.08-1.51). CONCLUSIONS At a programmatic level, dolutegravir was being widely prescribed in sub-Saharan Africa for people with HIV and tuberculosis co-infection with a dose adjustment for the drug-drug interaction with rifampicin. Despite this more complex regimen, our cohort study revealed that dolutegravir did not negatively impact viral suppression

    Differential gene expression in nearly isogenic lines with QTL for partial resistance to Puccinia hordei in barley

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The barley-<it>Puccinia hordei </it>(barley leaf rust) pathosystem is a model for investigating partial disease resistance in crop plants and genetic mapping of phenotypic resistance has identified several quantitative trait loci (QTL) for partial resistance. Reciprocal QTL-specific near-isogenic lines (QTL-NILs) have been developed that combine two QTL, <it>Rphq</it>2 and <it>Rphq</it>3, the largest effects detected in a recombinant-inbred-line (RIL) population derived from a cross between the super-susceptible line L94 and partially-resistant line Vada. The molecular mechanism underpinning partial resistance in these QTL-NILs is unknown.</p> <p>Results</p> <p>An Agilent custom microarray consisting of 15,000 probes derived from barley consensus EST sequences was used to investigate genome-wide and QTL-specific differential expression of genes 18 hours post-inoculation (hpi) with <it>Puccinia hordei</it>. A total of 1,410 genes were identified as being significantly differentially expressed across the genome, of which 55 were accounted for by the genetic differences defined by QTL-NILs at <it>Rphq</it>2 and <it>Rphq</it>3. These genes were predominantly located at the QTL regions and are, therefore, positional candidates. One gene, encoding the transcriptional repressor Ethylene-Responsive Element Binding Factor 4 (<it>HvERF4</it>) was located outside the QTL at 71 cM on chromosome 1H, within a previously detected eQTL hotspot for defence response. The results indicate that <it>Rphq</it>2 or <it>Rphq</it>3 contains a <it>trans</it>-eQTL that modulates expression of <it>HvERF4</it>. We speculate that HvERF4 functions as an intermediate that conveys the response signal from a gene(s) contained within <it>Rphq</it>2 or <it>Rphq</it>3 to a host of down-stream defense responsive genes. Our results also reveal that barley lines with extreme or intermediate partial resistance phenotypes exhibit a profound similarity in their spectrum of <it>Ph</it>-responsive genes and that hormone-related signalling pathways are actively involved in response to <it>Puccinia hordei</it>.</p> <p>Conclusions</p> <p>Differential gene expression between QTL-NILs identifies genes predominantly located within the target region(s) providing both transcriptional and positional candidate genes for the QTL. Genetically mapping the differentially expressed genes relative to the QTL has the potential to discover <it>trans</it>-eQTL mediated regulatory relays initiated from genes within the QTL regions.</p

    Quantification of Calcyclin and Heat Shock Protein 90 in Sera from Women with and without Preeclampsia by Mass Spectrometry

    Get PDF
    Purpose: The objective of present study is to determine serum levels and placental distribution of two interacting proteins calcyclin and heat shock protein 90 in preeclampsia. Experimental design: Maternal serum levels of calcyclin and heat shock protein 90 are compared throughout pregnancy from the first trimester till term among women with preeclampsia (n = 43) and age-matched normotensive pregnant controls (n = 46). A serum-based 2D LC-MS assay using Parallel Reaction Monitoring is applied to quantify both calcyclin and heat shock protein 90. Results: Serum levels of calcyclin are significantly lower in patients with preeclampsia in the second trimester of pregnancy as compared to controls (p < 0.05). Serum levels of heat shock protein 90 are significantly higher in patients with preeclampsia in the third trimester as compared to controls (p < 0.001). Conclusion and clinical relevance: Both interacting proteins calcyclin and heat shock protein 90 are notably changed in preeclamptic patients compared to controls. Calcyclin is already decreased before the onset of preeclampsia in the second trimester and HSP90 is strongly increased in the third trimester. This suggests that these proteins may play a role in the pathogenesis of preeclampsia and ought to be investigated in large cohort studies as molecular biomarkers

    Preoperative anaemia and outcome after elective cardiac surgery:a Dutch national registry analysis

    Get PDF
    Background: Previous studies have shown that preoperative anaemia in patients undergoing cardiac surgery is associated with adverse outcomes. However, most of these studies were retrospective, had a relatively small sample size, and were from a single centre. The aim of this study was to analyse the relationship between the severity of preoperative anaemia and short- and long-term mortality and morbidity in a large multicentre national cohort of patients undergoing cardiac surgery. Methods: A nationwide, prospective, multicentre registry (Netherlands Heart Registration) of patients undergoing elective cardiac surgery between January 2013 and January 2019 was used for this observational study. Anaemia was defined according to the WHO criteria, and the main study endpoint was 120-day mortality. The association was investigated using multivariable logistic regression analysis. Results: In total, 35 484 patients were studied, of whom 6802 (19.2%) were anaemic. Preoperative anaemia was associated with an increased risk of 120-day mortality (adjusted odds ratio [aOR] 1.7; 95% confidence interval [CI]: 1.4–1.9; P<0.001). The risk of 120-day mortality increased with anaemia severity (mild anaemia aOR 1.6; 95% CI: 1.3–1.9; P<0.001; and moderate-to-severe anaemia aOR 1.8; 95% CI: 1.4–2.4; P<0.001). Preoperative anaemia was associated with red blood cell transfusion and postoperative morbidity, the causes of which included renal failure, pneumonia, and myocardial infarction. Conclusions: Preoperative anaemia was associated with mortality and morbidity after cardiac surgery. The risk of adverse outcomes increased with anaemia severity. Preoperative anaemia is a potential target for treatment to improve postoperative outcomes
    • …
    corecore