454 research outputs found

    Imprints of massive inverse seesaw model neutrinos in lepton flavor violating Higgs boson decays

    Get PDF
    In this paper we consider a Higgs boson with mass and other properties compatible with those of the recently discovered Higgs particle at the LHC, and explore the possibility of new Higgs leptonic decays, beyond the standard model, with the singular feature of being lepton flavor violating (LFV). We study these LFV Higgs decays, H→lklˉmH \to l_k\bar l_m, within the context of the inverse seesaw model (ISS) and consider the most generic case where three additional pairs of massive right-handed singlet neutrinos are added to the standard model particle content. We require in addition that the input parameters of this ISS model are compatible with the present neutrino data and other constraints, like perturbativity of the neutrino Yukawa couplings. We present a full one-loop computation of the BR(H→lklˉmH \to l_k\bar l_m) rates for the three possible channels, lklˉm=μτˉ, eτˉ, eμˉl_k\bar l_m=\mu \bar \tau,\, e \bar \tau,\, e \bar \mu, and analyze in full detail the predictions as functions of the various relevant ISS parameters. We study in parallel the correlated one-loop predictions for the radiative decays, lm→lkγl_m \to l_k \gamma, within this same ISS context, and require full compatibility of our predictions with the present experimental bounds for the three radiative decays, μ→eγ\mu \to e \gamma, τ→μγ\tau \to \mu \gamma, and τ→eγ\tau \to e \gamma. After exploring the ISS parameter space we conclude on the maximum allowed LFV Higgs decay rates within the ISS.Comment: 29 pages, 13 figures, 1 table, 1 appendix: v4 matches the manuscript published in PR

    Exotic μτjj\mu\tau j j events from heavy ISS neutrinos at the LHC

    Get PDF
    In this letter we study new relevant phenomenological consequences of the right-handed heavy neutrinos with masses at the O(1){\cal O}(1) TeV energy scale, working within the context of the Inverse Seesaw Model that includes three pairs of quasi-degenerate pseudo-Dirac heavy neutrinos. We propose a new exotic signal of these heavy neutrinos at the CERN Large Hadron Collider containing a muon, a tau lepton, and two jets in the final state, which is based on the interesting fact that this model can incorporate large Lepton Flavor Violation for specific choices of the relevant parameters, particularly, the neutrino Yukawa couplings. We will show here that an observable number of μτjj\mu\tau jj exotic events, without missing energy, can be produced at this ongoing run of the LHC.Comment: 7 pages, 4 figures. This version v3 matches the manuscript published in Physics Letters

    Charged lepton flavour violation from low scale seesaw neutrinos

    Full text link
    In the work presented here, we have studied the impact of right handed neutrinos, which are introduced to account for the evidence of neutrino masses, on charged lepton flavour violating observables. In particular, we have focused on the loop induced decays of the Z boson into two leptons of different flavour. We have performed a numerical study of the rates predicted for these processes within the Inverse Seesaw model, specifically considering scenarios where μ−e \mu -e transitions are suppressed. Our conclusion, after comparison with the most relevant experimental constraints, is that branching ratios as large as 10−7 10^{-7} can be predicted in the τ−μ \tau -\mu or τ−e \tau -e channels, together with heavy neutrinos having masses of the TeV order. Such rates could be accessible at next generation colliders.Comment: 13 pages, 5 figures, 3 tables. Proceedings of the Corfu Summer Institute 2016 "School and Workshops on Elementary Particle Physics and Gravity", 31 August - 23 September 2016, Corfu, Greec

    Radiative corrections to MhM_h from three generations of Majorana neutrinos and sneutrinos

    Get PDF
    In this work we study the radiative corrections to the mass of the lightest Higgs boson of the MSSM from three generations of Majorana neutrinos and sneutrinos. The spectrum of the MSSM is augmented by three right handed neutrinos and their supersymmetric partners. A seesaw mechanism of type I is used to generate the physical neutrino masses and oscillations that we require to be in agreement with present neutrino data. We present a full one-loop computation of these Higgs mass corrections, and analyze in full detail their numerical size in terms of both the MSSM and the new (s)neutrino parameters. A critical discussion on the different possible renormalization schemes and their implications is included.Comment: 42 pages, 39 figures, 1 appendix, version published in AHE

    Search for Light Exotic Fermions in Double-Beta Decays

    Get PDF
    The Standard Model of Particle Physics predicts the double-β decay of certain nuclei with the emission of two active neutrinos. In this letter, we argue that double-β decay experiments could be used to probe models with light exotic fermions through the search for spectral distortions in the electron spectrum with respect to the Standard Model expectations. We consider two concrete examples: models with light sterile neutrinos, singly produced in the double-β decay, and models with a light -odd fermion, pair produced due to a symmetry. We estimate the discovery potential of a selection of double-β decay experiments and find that future searches will test for the first time a new part of the parameter space of interest at the MeV-mass scale
    • …
    corecore