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In this paper we consider a Higgs boson with mass and other properties compatible with those of the
recently discovered Higgs particle at the LHC, and explore the possibility of new Higgs leptonic decays,
beyond the standard model, with the singular feature of being lepton flavor violating (LFV). We study these
LFV Higgs decays, H → lkl̄m, within the context of the inverse seesaw model (ISS) and consider the most
generic case where three additional pairs of massive right-handed singlet neutrinos are added to the
standard model particle content. We require in addition that the input parameters of this ISS model are
compatible with the present neutrino data and other constraints, like perturbativity of the neutrino Yukawa
couplings. We present a full one-loop computation of the BRðH → lkl̄mÞ rates for the three possible
channels, lkl̄m ¼ μτ̄, eτ̄, eμ̄, and analyze in full detail the predictions as functions of the various relevant
ISS parameters. We study in parallel the correlated one-loop predictions for the radiative decays, lm → lkγ,
within this same ISS context, and require full compatibility of our predictions with the present experimental
bounds for the three radiative decays, μ → eγ, τ → μγ, and τ → eγ. After exploring the ISS parameter space
we conclude on the maximum allowed LFV Higgs decay rates within the ISS.
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I. INTRODUCTION

At present, there seems to be a broad consensus in the
high energy physics community that the recently discov-
ered scalar particle at the CERN-LHC [1,2] behaves as the
Higgs particle of the standard model of particle physics
(SM). The most recent measurements of this scalar particle
mass by the ATLAS and CMS collaborations setmATLAS

h ¼
125.5� 0.6 GeV [3] and mCMS

h ¼ 125.7� 0.4 GeV [4],
respectively. These experiments also show that the most
probable JP quantum numbers for this discovered Higgs
boson are 0þ, and conclude that the measured Higgs
particle couplings to the other SM particles are in agree-
ment so far, although yet with moderate precision, with the
values predicted in the SM. Also, the scalar Higgs-like
particle width Γh has been found to be Γh < 17.4 MeV,
which is about 4.2 times the SM value [5].
On the other hand, there is also a major consensus that the

SMmust be modified in order to include the neutrino masses
and oscillations in agreement with present data, which are
nowadays quite impressive and urge of an explanation from
a theoretical framework beyond the SM. Thus, in order to be
compatible with the present neutrino data we choose here to
go beyond the SM using one of its simplest and more

appealing extensions, the inverse seesaw model (ISS) [6–8].
This ISS extends the SM particle content by adding pairs of
right-handed (RH) neutrinos with opposite lepton number
whose masses and couplings can be properly chosen to
produce the physical light neutrino masses and oscillations
in good agreement with present data [9–11]. In contrast to
the original seesaw type I model [12–16], the seesaw
mechanism that produces the small light physical neutrino
masses in the ISS is associated to the smallness of the
Majorana mass model parameters, such that when these are
set to zero lepton number conservation is restored, therefore
increasing the symmetries of the model. Another appealing
feature of the ISS is that it allows for large Yukawa neutrino
couplings while having at the same time moderately heavy
right-handed neutrino masses at the OðTeVÞ energies that
are reachable at the present colliders, like the LHC. In
addition to the possibility of being directly produced at
colliders, these right-handed neutrinos could also lead to a
new rich phenomenology in connection with lepton flavor
violating (LFV) Physics. This is because the ISS right-
handed neutrinos can produce non-negligible contributions
to LFV processes via radiative corrections that are mediated
by the sizable neutrino Yukawa couplings, therefore leading
to clear signals/imprints in these rare processes, which are
totally absent in the SM. These LFV processes include the
most frequently studied radiative decays, μ → eγ, τ → μγ,
τ → eγ, others like μ → 3e, leptonic and semileptonic τ
decays, μ − e conversion in heavy nuclei, and others (see
[17] for a review). The ISS mechanism also has implications
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ondeviations from lepton flavoruniversality [18,19] and from
lepton number conservation [20–24]. Although quite prom-
ising future sensitivities for some of these LFV processes are
expected, for instance, for μ − e conversion in heavy nuclei
[25–28], at present the highest sensitivity to LFV signals is
obtained in μ → eγ where MEG has set an upper bound at
branching ratio (BR), BRðμ → eγÞ < 5.7 × 10−13 [29].
In this paper, we study other LFV processes, the Higgs

decays into lepton-antilepton pairs H → lkl̄m with k ≠ m,
which are of obvious interest at present, given the recent
discovery of the Higgs particle and the fact that these rare
Higgs decays are also being presently explored at the LHC.
The current direct search at the LHC for these LFV Higgs
decays (LFVHD) has been recently reported in [30], where
an upper limit of BRðH → μτÞ < 1.57% at 95% C.L. has
been set using 19.7 fb−1 of

ffiffiffi
s

p ¼ 8 TeV. This improves
previous constraints from indirect measurements at LHC
[31] by roughly one order of magnitude (see also [32]), and it
is close to the previous estimates in [33] that predicted
sensitivities of 4.5 × 10−3 (see also [34]). The future
perspectives for LFVHD searches are encouraging due to
the expected high statistics of Higgs events at future hadronic
and leptonic colliders. Although, to our knowledge, there is
no realistic study, including background estimates, of the
expected future experimental sensitivities for these kinds of
rare LFVHD events, a naive extrapolation from the present
situation can be done. For instance, the future LHC runs withffiffiffi
s

p ¼ 14 TeV and total integrated luminosity of first
300 fb−1 and later 3000 fb−1 expect the production of about
25 and 250 million Higgs events, respectively, to be
compared with 1 million Higgs events that the LHC
produced after the first run [35]. These large numbers
suggest an improvement in the long-term sensitivities to
BRðH → μτÞ of at least two orders of magnitude with
respect to the present sensitivity. Similarly, at the planned
lepton colliders, like the international linear collider (ILC)
with1

ffiffiffi
s

p ¼ 1 TeV and 2.5 ab−1 [36], and the future
electron-positron circular collider (FCC-ee) as the TLEP
with

ffiffiffi
s

p ¼ 350 GeV and 10 ab−1 [37], the expectations are
of about 1 and 2 million Higgs events, respectively, with
much lower backgrounds due to the cleaner environment,
which will also allow for a large improvement in LFV Higgs
searches with respect to the current sensitivities.
We will present a full one-loop computation of the LFV

partial decay widths, ΓðH → lkl̄mÞ, within the ISS context
with three extra pairs of right-handed neutrinos, and will
analyze in full detail the predictions for the LFVHD rates,
BRðH → lkl̄mÞ, as functions of the various relevant ISS
parameters. These LFV Higgs decays were analyzed in the
context of the SM enlarged with three heavy Majorana
neutrinos for the first time in [38]. Later, theywere computed
in the context of the seesaw I model in [39], and they were

found to lead to extremely small rates due to the strong
suppression from the extremely heavy right-handed neutrino
masses, at 1014–15 GeV, in that case. This motivates our
study of the LFVHiggs decays in the ISS casewith the right-
handed neutrino masses lying in contrast at the OðTeVÞ
energy scale and therefore the rates are expected to be larger
than in the seesaw I case. The interest of neutrino masses at
thisOðTeVÞ energy scale is also because they can be directly
produced at the LHC. Furthermore, we will also study in
parallel the correlated one-loop predictions for the radiative
decays, BRðlm → lkγÞ, within this same ISS context, andwe
will require full compatibility of our predictions with the
present experimental upper bounds for the three relevant
radiative decays, μ → eγ, τ → μγ, and τ → eγ, the first
one being the most constraining one. We will require in
addition that the input parameters of the ISS are compatible
with the present neutrino data and other constraints, like
perturbativity of the neutrino Yukawa couplings. After
exploring the ISS parameter space we will conclude on
themaximumallowedLFVHiggsdecay rateswithin the ISS.
The paper is organized as follows: in Sec. II we

summarize our theoretical framework and shortly review
the main features of the ISS that are relevant for the present
computation. In Sec. III we present our computation of the
one-loop LFV Higgs decay widths within the ISS and
include, for completeness and comparison, both the ana-
lytical formulas for the LFV Higgs decays and the LFV
radiative decays. The full one-loop analytical formulas for
the LFV Higgs form factors are collected in the Appendix.
Section IV is devoted to the presentation of the numerical
results of our computation and also includes the predictions
for both kind of LFV processes, the branching ratios for the
LFV Higgs decays,H → μτ̄, H → eτ̄, and H → eμ̄ that we
compare with the branching ratios for the radiative decays,
τ → μγ, τ → eγ, and μ → eγ. Finally, we summarize our
conclusions in Sec. V.

II. THEORETICAL FRAMEWORK

One of the simplest extensions of the SM leading to
nonzero neutrino masses and mixing is the addition of
fermionic gauge singlets. As mentioned above, a very
attractive model is the ISS that supplements the SM with
pairs of RH neutrinos, denoted here by νR and X, with
opposite lepton number. While the minimal model that fits
oscillation data requires only two generations of RH
neutrinos [40], we consider here a more generic model
containing three pairs of fermionic singlets. It extends the
SM Lagrangian with the following neutrino Yukawa
interactions and mass terms:

LISS ¼ −Yij
ν Li

~Φ νRj −Mij
Rν

C
RiXj −

1

2
μijXX

C
i Xj þ H:c:; ð1Þ

where L is the SM lepton doublet, Φ is the SM Higgs
doublet, ~Φ ¼ ισ2Φ�, with σ2 being the corresponding Pauli

1We thank J. Fuster for private communication with the
updated ILC perspectives.
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matrix, Yν is the 3 × 3 neutrino Yukawa coupling matrix,
MR is a lepton number conserving complex 3 × 3 mass
matrix, and μX is a Majorana complex 3 × 3 symmetric
mass matrix that violates lepton number conservation by
two units. Setting the latter to zero would restore the
conservation of lepton number, thus increasing the sym-
metry of the model. This makes the smallness of μX natural
since it could be seen as the remnant of a symmetry broken
at a higher energy [41]. Since a Majorana mass term of the
type νRiν

C
Rj would only give subleading corrections to the

neutrino masses and the observables considered here, we
have taken it to be zero, for simplicity.
After electroweak symmetry breaking, the 9 × 9 neutrino

mass matrix reads, in the electroweak interaction basis
ðνCL; νR; XÞ,

MISS ¼

0
B@

0 mD 0

mT
D 0 MR

0 MT
R μX

1
CA; ð2Þ

with the 3 × 3 Dirac mass matrix given by mD ¼ YνhΦi,
and the Higgs vacuum expectation value is taken to be
hΦi ¼ v ¼ 174 GeV. Since this mass matrix is complex
and symmetric, it can be diagonalized using a 9 × 9 unitary
matrix Uν according to

UT
νMISSUν ¼ diagðmn1 ;…; mn9Þ: ð3Þ

This gives three light mass eigenstates and six heavy mass
eigenstates, and the electroweak eigenstates and the mass
eigenstates are related through

0
B@

νCL
νR

X

1
CA ¼ UνPR

0
B@

n1

..

.

n9

1
CA;

0
B@

νL

νCR
XC

1
CA ¼ U�

νPL

0
B@

n1

..

.

n9

1
CA:

ð4Þ

In order to illustrate more simply the dependence on the
seesaw parameters, let us first consider the one generation
case and then wewill come back to the three generation case.
In this one generation case there are just three ISS model
parameters,MR, μX, and Yν, and there are just three physical
eigenstates: one light ν and two heavy N1 and N2. In the
limit μX ≪ mD, MR, the mass eigenvalues are given by

mν ¼
m2

D

m2
D þM2

R
μX; ð5Þ

mN1;N2
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

R þm2
D

q
þ M2

RμX
2ðm2

D þM2
RÞ

; ð6Þ

with the light neutrino mass mν being proportional to μX,
thus making it naturally small, and the two heavy masses

mN1;N2
being close to each other. As a consequence in this

μX ≪ mD, MR limit, these two nearly degenerate heavy
neutrinos combine to form pseudo-Dirac fermions.
A similar pattern of neutrino mass eigenvalues occurs in

the three generation case, with one light and two nearly
degenerate heavy neutrinos per generation. This can be
illustrated clearly in the limit μX ≪ mD ≪ MR, where the
mass matrix MISS can be diagonalized by blocks [42],
leading to the following 3 × 3 light neutrino mass matrix:

Mlight ≃mDMT
R
−1μXM−1

R mT
D; ð7Þ

which is then diagonalized using the unitary Pontecorvo–
Maki–Nakagawa–Sakata (PMNS) matrix UPMNS [43]:

UT
PMNSMlightUPMNS ¼ diagðmν1 ; mν2 ; mν3Þ; ð8Þ

where mν1 ,mν2 , and mν3 are the masses of the three lightest
neutrinos.
Then, by defining a new 3 × 3 mass matrix by

M ¼ MRμ
−1
X MT

R; ð9Þ

the light neutrino mass matrix can be written similarly to
the type I seesaw model as

Mlight ≃mDM−1mT
D: ð10Þ

The mass pattern of the heavy neutrinos in the μX ≪ mD ≪
MR limit presents a similar behavior to the one generation
case. The heavy neutrinos form quasidegenerate pairs with
a mass approximately given by the eigenvalues of MR,
namely MR1;2;3

for the first, second, and third generation,
respectively, and with a splitting of order OðμXÞ.
For our phenomenological purposes, and in order to

implement easily the compatibility with present neutrino
data, we will use here the useful Casas-Ibarra parametriza-
tion [44] that can be directly applied to the inverse seesaw
model case, giving

mT
D ¼ V†diagð

ffiffiffiffiffiffiffi
M1

p
;

ffiffiffiffiffiffiffi
M2

p
;

ffiffiffiffiffiffiffi
M3

p
Þ

× R diagð ffiffiffiffiffiffiffi
mν1

p
;

ffiffiffiffiffiffiffi
mν2

p
;

ffiffiffiffiffiffiffi
mν3

p ÞU†
PMNS; ð11Þ

where V is a unitary matrix that diagonalizes M according
to M ¼ V†diagðM1;M2;M3ÞV� and R is a complex
orthogonal matrix that can be written as

R ¼

0
B@

c2c3 −c1s3 − s1s2c3 s1s3 − c1s2c3
c2s3 c1c3 − s1s2s3 −s1c3 − c1s2s3
s2 s1c2 c1c2

1
CA; ð12Þ

where ci ≡ cos θi, si ≡ sin θi and θ1, θ2, and θ3 are
arbitrary complex angles.
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In summary, assuming μX ¼ diagðμX1
; μX2

; μX3
Þ and

MR ¼ diagðMR1
;MR2

;MR3
Þ (hence, diagonalM), the input

ISS parameters that will have to be fixed for our forth-
coming study of the LFV rates are the following: mν1;2;3 ,
μX1;2;3

, MR1;2;3
, θ1;2;3, and the entries of the UPMNS matrix.

For all the numerical analysis in this work, and in order to
keep agreement with the experimental neutrino data, we
will choose the lightest neutrino mass, here assumed to be
mν1 , as a free input parameter and the other two light
masses will be obtained from the two experimentally
measured mass differences:

mν2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ν1 þ Δm2
21

q
; mν3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ν1 þ Δm2
31

q
: ð13Þ

Similarly, the three light neutrino mixing angles will also
be set to their measured values. For simplicity, we will set
to zero the CP-violating phase of the UPMNS matrix.
Specifically, we have used the results of the global fit
[10] leading to

sin2θ12 ¼ 0.306þ0.012
−0.012 ; Δm2

21 ¼ 7.45þ0.19
−0.16 × 10−5 eV2;

sin2θ23 ¼ 0.446þ0.008
−0.008 ; Δm2

31 ¼ 2.417þ0.014
−0.014 × 10−3 eV2;

sin2θ13 ¼ 0.0231þ0.0019
−0.0019 ; ð14Þ

where we have assumed a normal hierarchy. Regarding the
input lightest neutrino mass, mν1 , we have chosen it so that
the effective electron neutrino mass in β decay agrees with
the upper limit from the Mainz and Troitsk experiments
[45,46],

mβ < 2.05 eV at 95%C:L: ð15Þ

For the final numerical evaluation of the eigenvalues and
eigenstates of the full 9 × 9 neutrinomatrix,we have used our
privateMathematica code that solves this systemnumerically,
using all the previously mentioned input parameters and
experimental data; and besides it also computes the Yukawa
coupling matrix entries by using Eq. (11).
In order to illustrate the kind of generic neutrino spectra

that one obtains in the ISS and that indeed follow the
previously commented pattern, we have chosen in this section
to show three examples of spectra whose most relevant
parameters for the present work are collected in Table I.
We see clearly in these three examples that one typically

gets the announced pattern of neutrino masses: three light
neutrinos compatible with data and six heavy ones, with
their heavy masses being degenerate in pairs to values close
to MR1

, MR2
, and MR3

respectively, and their tiny mass
differences given approximately by μX1

, μX2
, and μX3

. We
also see in this table that one can get sizable Yukawa
couplings, in particular leading to large nondiagonal entries
in flavor space, which are the relevant ones for the present
work on lepton flavor violation. It should also be noticed
that the heavy masses that are governing the size of these
off diagonal entries are not those ofMR but those of Eq. (9),
which are largely heavier, therefore leading in general to
larger LFV rates in the ISS than in the seesaw I. For
instance, the chosen examples in this table lead to large
jðYνY

†
νÞ23j and jðYνY

†
νÞ13j in theOð1–10Þ range. jðYνY

†
νÞ12j

in these examples is slightly smaller, ≤ Oð1Þ.
One way of checking the validity of the parametrization

in Eq. (11) is by comparing the input light neutrino mass
values in this equation with the lightest output mass values
obtained as a solution of Eq. (3). We have checked that the
error on the light neutrino masses estimated with this

TABLE I. Examples of neutrino mass spectrum in the ISS for various input parameters. The relevant nondiagonal
jðYνY

†
νÞkmj elements are also included.

ISS examples A B C

MR1
ðGeVÞ 1.5 × 104 1.5 × 102 1.5 × 102

MR2
ðGeVÞ 1.5 × 104 1.5 × 103 1.5 × 103

MR3
ðGeVÞ 1.5 × 104 1.5 × 104 1.5 × 104

μX1;2;3
ðGeVÞ 5 × 10−8 5 × 10−8 5 × 10−8

mν1ðeVÞ 0.1 0.1 0.1
θ1;2;3ðradÞ 0, 0, 0 0, 0, 0 π=4, 0, 0
mn1ðeVÞ 0.0998 0.0998 0.0998
mn2ðeVÞ 0.1002 0.1002 0.1002
mn3ðeVÞ 0.1112 0.1112 0.1112
mn4ðGeVÞ 15014.99250747 150.1499250500 150.1499250500
mn5ðGeVÞ 15014.99250752 150.1499250999 150.1499250999
mn6ðGeVÞ 15015.04822299 1501.504822277 1501.587676006
mn7ðGeVÞ 15015.04822304 1501.504822327 1501.587676056
mn8ðGeVÞ 15016.70543659 15016.70543659 15015.87685358
mn9ðGeVÞ 15016.70543664 15016.70543664 15015.87685363
jðYνY

†
νÞ23j 0.8 8.0 1.4

jðYνY
†
νÞ12j 0.2 1.7 0.3

jðYνY
†
νÞ13j 0.2 1.8 4.0
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parametrization, meaning the differences between the input
mν1;2;3 and the output mn1;2;3 masses, is below 10% and that
the rotation matrix Uν exhibits the required unitarity
property. Furthermore, since a given set of input parameters
can generate arbitrarily large Yukawa couplings, we will
enforce their perturbativity by setting an upper limit on the
entries of the neutrino Yukawa coupling matrix, given by

jYijj2
4π

< 1.5; ð16Þ

for i; j ¼ 1; 2; 3. This particular perturbativity condition
has been used in the literature (see, for instance, SPHENO
VERSION 2.0 [47]) but others more conservative than this
have also been used (see, for instance, SPHENO VERSION

3.1 [48]). In the absence of a concrete evaluation of the next
order corrections to the observable of interest (two-loop
contributions to the LFVHD rates in our present case,
which are beyond the scope of this article), the perturba-
tivity condition is not uniquely defined and the choice of a
specific criterion is an open issue. For instance, the use of a
more conservative condition like jYijj2 < 4π instead of
Eq. (16) will not qualitatively change our results and will
just lead to a decrease on the maximum LFVHD rates
allowed by perturbativity,2 by roughly a factor of (1=5), as
can be easily estimated with our approximate formulas that
will be presented later.
Finally, to complete our setup of the theoretical frame-

work for our study of LFV, we also have to specify all the
relevant interactions that will enter in the computation of
the LFVHD rates. We focus here on the relevant inter-
actions involving neutrinos, which are the only ones that
are assumed here to differ from those of the SM. These
include the neutrino Yukawa couplings, the gauge cou-
plings of the charged gauge bosons W� to the lepton-
neutrino pairs and the corresponding couplings of the
charged Goldstone bosons, denoted here by G�, to the
lepton-neutrino pairs. In our one-loop computation of
the LFV rates we will choose to work in the mass basis
for all the particles involved, with diagonal charged leptons,
and taking into account the contributions from all the nine
physical neutrinos. As for the gauge choice, we will choose
the Feynman-t’Hooft gauge. Following the notation and
presentation in [39,49], the relevant interactions are given
in the mass basis by the following terms of the Lagrangian:

LW�
int ¼ −gffiffiffi

2
p Wμ− l̄iBlinjγμPLnj þ H:c:;

LH
int ¼

−g
2mW

Hn̄iCninj ½mniPL þmnjPR�nj;

LG�
int ¼ −gffiffiffi

2
p

mW

G−½l̄iBlinjðmliPL −mnjPRÞnj� þ H:c:;

ð17Þ

where PL and PR are respectively the left- and right-
chirality projectors, given by ð1 − γ5Þ=2 and ð1þ γ5Þ=2,
and the coupling factors Blinj (i ¼ 1; 2; 3, j ¼ 1;…; 9) and
Cninj (i; j ¼ 1;…; 9) are defined in terms of the Uν matrix
of Eq. (3) by

Blinj ¼ Uν�
ij ; ð18Þ

Cninj ¼
X3
k¼1

Uν
kiU

ν�
kj : ð19Þ

III. COMPUTATION OF THE LFV
DECAY WIDTHS

In the calculation of the LFV Higgs decay rates, we
consider the full set of contributing one-loop diagrams,
drawn in Fig. 1, and adapt to our present ISS case the
complete one-loop formulas for the ΓðH → lkl̄mÞ partial
decay width, taken from [39], which we include, for
completeness, also here. The relation between the form
factors FL and FR given in the Appendix and the decay
amplitude F is given by

iF ¼ −igūlkð−p2ÞðFLPL þ FRPRÞvlmðp3Þ; ð20Þ

where

FL ¼
X10
i¼1

FðiÞ
L ; FR ¼

X10
i¼1

FðiÞ
R ; ð21Þ

and p1 ¼ p3 − p2 is the ingoing Higgs boson momentum.
The width for the LFV Higgs decays is obtained from

these form factors by

ΓðH → lkl̄mÞ ¼
g2

16πmH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

�
mlk þmlm

mH

�
2
��

1 −
�
mlk −mlm

mH

�
2
�s

× ððm2
H −m2

lk
−m2

lm
ÞðjFLj2 þ jFRj2Þ − 4mlkmlmReðFLF�

RÞÞ: ð22Þ
In this work we focus on the decays H → μτ̄; eτ̄; eμ̄ and do not consider their related CP conjugate decaysH → τμ̄; τē; μē,
which, in the presence of complex phases, could lead to different rates.

2We thank the referee for suggesting this other possible choice.
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We have explicitly checked that the only divergent
contributions to the LFV Higgs decays arise from the
diagrams (1), (8), and (10), and that they cancel among
each other, in agreement with [39], giving rise to a total finite
result. All these formulas for the LFVHiggs form factors and
the LFV Higgs partial decay widths have been implemented
into our privateMathematica code. In order to get numerical
predictions for the BRðH → lkl̄mÞ rates we use mH ¼
126 GeV and its corresponding SM total width is computed
with FEYNHIGGS [50–52] including two-loop corrections.
At the same time that we analyze the LFV Higgs decays,

we also compute the one-loop lm → lkγ decay rates within
this same ISS framework and for the same input param-
eters, and check that these radiative decay rates are
compatible with their present experimental 90% C.L. upper
bounds [29,53]:

BRðμ → eγÞ ≤ 5.7 × 10−13; ð23Þ

BRðτ → eγÞ ≤ 3.3 × 10−8; ð24Þ

BRðτ → μγÞ ≤ 4.4 × 10−8: ð25Þ

In order to calculate these LFV radiative decay rates, which
have been first computed in [54], we use the analytical

formulas appearing in [49] and [55] that have also been
implemented in our code:

BRðlm → lkγÞ ¼
α3Ws

2
W

256π2

�
mlm

MW

�
4mlm

Γlm

jGmkj2; ð26Þ

where Γlm is the total decay width of the lepton lm, and

Gmk ¼
X6
i¼1

B�
miBkiGγ

�
m2

Ni

M2
W

�
;

GγðxÞ ¼ −
2x3 þ 5x2 − x
4ð1 − xÞ3 −

3x3

2ð1 − xÞ4 log x; ð27Þ

where the sum above extends over the six heavy neutrinos,
N1;::;6 ¼ n4;::;9. Notice that in the above formulas (26)–(27)
the mass of the final lepton lk has been neglected.
Finally, we offer a few words summarizing the various

constraints that we have also implemented in our code. As
we have already said, we have imposed the perturbativity
constraint on the neutrino Yukawa couplings given in
Eq. (16). Regarding the Higgs total width, it could be
modified by the presence of sterile neutrinos with a mass
below the Higgs boson mass that could open new invisible
decays, as was studied in [56,57]. However, in this work,

FIG. 1. One-loop contributing diagrams to the LFV Higgs decays H → lkl̄m in the ISS with massive neutrinos niði ¼ 1; ::; 9Þ.
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we focus on the scenario where the new fermionic singlets
have a mass above 200 GeV, thus escaping these con-
straints. If the right-handed neutrinos provide a sizable
contribution to LFV processes, a non-negligible contribu-
tion to the lepton electric dipole moments (EDMs) could
also be expected in the general case with complex phases.
Thus, to avoid potential constraints from EDMs, we assume
in most of this work that all mass matrices are real, as well
as the PMNSmatrix. The case of complexRmatrix has also
been considered in this work, but as it will be shown later
(see Fig. 8) it is highly constrained by μ → eγ. Additional
constraints might also arise from lepton universality tests.
However, in the scenario that we consider where the sterile
neutrinos are heavier than the Higgs boson, points that
would be excluded by lepton universality tests are already
excluded by μ → eγ, as can be seen in Fig. 8 of [19]. In the
end, we found that the most constraining observable for our
study is by far μ → eγ.

IV. NUMERICAL RESULTS FOR THE LFV RATES

In this section we present our numerical results for
the LFV Higgs decay rates, BRðH → μτ̄Þ, BRðH → eτ̄Þ,
and BRðH → eμ̄Þ, and we also compare them with the
numerical results for the related radiative decay rates,
BRðμ → eγÞ, BRðτ → eγÞ, and BRðτ → μγÞ. First, we
consider the simplest case of diagonal MR and μX matrices
and study all these LFV rates as functions of the more
relevant ISS parameters, namely, MRi

, μXi
, mνi , and the R

matrix angles, θi, trying to localize the areas of the
parameter space where the LFV Higgs decays can be both
large and respect the constraints on the radiative decays.
The results of this first case will be presented in two
generically different scenarios for the heavy neutrinos:
(1) the case of (nearly) degenerate heavy neutrinos (first

subsection), and (2) the case of hierarchical heavy neutrinos
(second subsection). In the last subsection, we then con-
sider the most general case of nondiagonal μX and look for
solutions within the ISS that lead to the largest and allowed
LFVHD rates. We will then present our predictions for the
maximal allowed BRðH → μτ̄Þ and BRðH → eτ̄Þ rates and
will provide some specific examples for this kind of ISS
scenario.

A. Degenerate heavy neutrinos

The case of (nearly) degenerate heavy neutrinos is
implemented here by choosing degenerate entries in MR ¼
diagðMR1

;MR2
;MR3

Þ and in μX ¼ diagðμX1
; μX2

; μX3
Þ, i.e.,

by setting MRi
¼ MR and μXi

¼ μX (i ¼ 1; 2; 3).
First, we show in Fig. 2 the results for all the LFV rates

as functions of the common right-handed neutrino mass
parameter MR for all the LFV Higgs decay channels (left
panel) and for all the LFV radiative decay channels (right
panel). Here we have fixed the other input parameters to
μX ¼ 10−7 GeV, mν1 ¼ 0.1 eV, and R ¼ I. As expected,
we find that the largest LFV Higgs decay rates are for
BRðH → μτ̄Þ and the largest radiative decay rates are for
BRðτ → μγÞ. We also see that, for this particular choice of
input parameters, all the predictions for the LFV Higgs
decays are allowed by the present experimental upper
bounds on the three radiative decays (dashed horizontal
lines in all our plots for the radiative decays) for all
explored values of MR in the interval ð200; 107Þ GeV.
Besides, it shows clearly that the most constraining
radiative decay at present is by far the μ → eγ radiative
decay. This is so in all the cases explored in this work, so
whenever we wish to conclude on the allowed LFVHD
rates we will focus mainly on this radiative channel.
Regarding the MR dependence shown in Fig. 2, we

clearly see that the LFVHD rates grow faster withMR than
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BR lm lk

FIG. 2 (color online). Predictions for the LFV decay rates as functions of MR in the degenerate heavy neutrinos case. Left panel:
BRðH → μτ̄Þ (upper blue line), BRðH → eτ̄Þ (middle dark brown line), BRðH → eμ̄Þ (lower red line). Right panel: BRðτ → μγÞ (upper
blue line), BRðμ → eγÞ (middle red line), BRðτ → eγÞ (lower dark brown line). The other input parameters are set to μX ¼ 10−7 GeV,
mν1 ¼ 0.1 eV, R ¼ I. The dotted lines in both panels indicate nonperturbative neutrino Yukawa couplings. The horizontal dashed lines
in the right panel are the present (90% C.L.) upper bounds on the radiative decays: BRðτ → μγÞ < 4.4 × 10−8 [53] (blue line),
BRðτ → eγÞ < 3.3 × 10−8 [53] (dark brown line), BRðμ → eγÞ < 5.7 × 10−13 [29] (red line).
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the radiative decays, which indeed tend to a constant value
for MR above ∼103 GeV. In fact, the LFVHD rates can
reach quite sizable values at the large MR region of these
plots, yet are allowed by the constraints on the radiative
decays. For instance, we obtain BRðH → μτ̄Þ ∼ 10−6 for
MR ¼ 4 × 105 GeV. However, our requirement of pertur-
bativity for the neutrino Yukawa coupling entries, see
Eq. (16), does not allow for such large MR values leading
to too-large Yν values in the framework of our para-
metrization of Eq. (11). Indeed, the exclusion region for
MR from perturbativity of Yν (given by the dotted lines
in these plots), forbids these large MR values. For the
specific input parameter values of this Fig. 2, the forbidden
values are for MR above 3 × 104 GeV, and this leads to
maximum allowed values of BRðH → μτ̄Þ ∼ 2 × 10−11,
BRðH → eτ̄Þ ∼ 10−12, and BRðH → eμ̄Þ ∼ 5 × 10−15.
The qualitatively different functional behavior with MR

of the LFVHD and the radiative rates shown by Fig. 2 is an
interesting feature that we wish to explore further. Whereas
the BRðlm → lkγÞ rates follow the expected behavior with
MR as derived from their dependence with the relevant
ðYνY

†
νÞkm element, the BRðH → lkl̄mÞ rates do not follow

this same pattern. As it is clearly illustrated in Fig. 3, the
radiative decay rates can be well approximated for largeMR
by a simple function of jðYνY

†
νÞkmj2 given by

BRapprox
lm→lkγ

¼ 8 × 10−17
m5

lm
ðGeV5Þ

ΓlmðGeVÞ
���� v2

2M2
R
ðYνY

†
νÞkm

����2;
ð28Þ

which provides predictions very close to the exact rates
(given by the solid lines) for MR > 103 GeV. Then we can
understand the final constant behavior of all the radiative
decay rates with MR, since the jðYνY

†
νÞkmj2 elements grow

with MR approximately as M4
R in the parametrization here

used of Eq. (11), as can be seen in the plot on the right in
Fig. 3. This simple behavior with MR is certainly not the
case of the LFVHD rates, and we conclude that these do not
follow this same behavior with jðYνY

†
νÞkmj2. This different

functional behavior of BRðH → lkl̄mÞ with MR will be
further explored and clarified later.
Next we study the sensitivity in the LFV rates to other

choices of μX. For this study we focus on the largest
LFVHD rates, BRðH → μτ̄Þ, and on the most con-
straining BRðμ → eγÞ rates. In Fig. 4 we show the
predictions for the LFV rates for different values of μX ¼
ð10−8; 10−6; 10−4; 10−2Þ GeV. The other input parameters
have been fixed here to mν1 ¼ 0.1 eV and R ¼ I. On the
left panel of Fig. 4 we see again the increase of BRðH →
μτ̄Þ as MR grows, which is more pronounced in the region
where MR is large and μX is low, and, therefore, where the
Yukawa couplings are large [see Eq. (11)]. We have
checked that, in that region, the dominant diagrams are
by far the divergent diagrams (1), (8), and (10), and that the
BRðH → μτ̄Þ rates grow as M4

R. In this plot, as well as in
the previous plot of BRðH → lkl̄mÞ in Fig. 2, we can also
identify the appearance of different dips, which we have
understood as destructive interferences among the various
contributing diagrams. More precisely, we have checked
that the dips that appear at largeMR and just before theM4

R
growing region are due to partial cancellations between
diagrams (1), (8), and (10), while the other dips that appear
at lower MR happen among diagrams (2)–(6) [(7) and (9)
are subleading]. These last diagrams have relevant con-
tributions to BRðH → μτ̄Þ only for low values of the
Yukawa couplings. We also observe a fast growth of the
LFV Higgs rates as μX decreases from 10−2 GeV to
10−8 GeV. However, not all the values of MR and μX
are allowed, because they may generate nonperturbative
Yukawa entries, expressed again in this figure by dotted
lines. Therefore, the largest LFV Higgs rates permitted
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BR e
BR e
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FIG. 3 (color online). Comparison of the full one-loop and approximate rates for the radiative decays lm → lkγ and their relation with
the ðYνY

†
νÞkm nondiagonal matrix elements in the degenerate heavy neutrinos case. Left panel: full one-loop rates (solid lines) and

approximate rates (dashed lines) as functions of MR. Right panel: jðYνY
†
νÞkmj2 versus MR for km ¼ 23 (blue line), km ¼ 12 (red line),

and km ¼ 13 (dark brown line). Dotted lines indicate nonperturbative neutrino Yukawa couplings. The other input parameters are set to
μX ¼ 10−7 GeV, mν1 ¼ 0.1 eV, and R ¼ I.
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by our perturbativity requirements [Eq. (16)] are approx-
imately BRðH → μτ̄Þ ∼ 10−9, obtained for μX ¼ 10−8 GeV
and MR ≃ 104 GeV. Larger values of MR, for this choice
of μX, would produce Yukawa couplings that are not
perturbative.
Nevertheless, we must pay attention to the predictions of

BRðμ → eγÞ for this choice of parameters, because they
can be excluded by its quite restrictive present experimental
upper bound, as shown on the right panel of Fig. 4. In this
plot, the dependence of BRðμ → eγÞ onMR is depicted, for
the same choices of μX, mν1 , and R as in the left panel. The
horizontal red dashed line denotes again its current upper
bound; see Eq. (23). In addition to what we have already
learned about the approximate behavior of the BRðμ → eγÞ
rates going as jðYνY

†
νÞ12=M2

Rj2, which explains the constant
behavior with MR, we also learn from this figure about the
generic behavior with μX, which leads to increasing LFV
rates for decreasing μX values, for both LFVHD and
radiative processes. In particular, we see that small values
of μX ≤ Oð10−8 GeVÞ lead to BRðμ → eγÞ rates that are
excluded by the present experimental upper bound. Taking
this into account, the largest value of BRðH → μτ̄Þ, for the

choice of parameters fixed in Fig. 4, that is allowed by the
BRðμ → eγÞ upper bound (this being more restrictive than
the perturbativity requirement in this case) is ∼10−12,
which is obtained forMR ¼ 105 GeV and μX ¼ 10−6 GeV.
The behavior of BRðH → μτ̄Þ and BRðμ → eγÞ as

functions of μX, for several values of MR, mν1 ¼ 0.1 eV,
and R ¼ I, is displayed in Fig. 5. As already seen in Fig. 4,
both LFV rates decrease as μX grows; however, the func-
tional dependence is not the same. The LFV radiative decay
rates decrease as μ−2X , in agreement with the approximate
expression (28), while the LFVHD rates go as μ−4X when
the Yukawa couplings are large. For a fixed value of μX, the
larger MR is, the larger BRðH → μτ̄Þ can be, while the
prediction for BRðμ → eγÞ is the same for any value ofMR.
We have already learned this independence of the LFV
radiative decays onMR from the previous figure, which can
be easily confirmed on the right panel of Fig. 5, where all
the lines for different values of MR are superimposed.
We observe again the existence of dips in the left panel of
Fig. 5. We also see in this figure that the smallest value
of μX allowed by the BRðμ → eγÞ upper bound is
μX ∼ 5 × 10−8 GeV, which is directly translated to a
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FIG. 5 (color online). Branching ratios of H → μτ̄ (left panel) and μ → eγ (right panel) as functions of μX for different values of
MR ¼ ð106; 105; 104; 103Þ GeV from top to bottom. In both panels,mν1 ¼ 0.1 eV and R ¼ I. The horizontal red dashed line denotes the
current experimental upper bound for μ → eγ, BRðμ → eγÞ < 5.7 × 10−13 [29]. Dotted lines represent nonperturbative neutrino Yukawa
couplings.
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FIG. 4 (color online). Branching ratios of H → μτ̄ (left panel) and μ → eγ (right panel) as functions of MR for different values of
μX ¼ ð10−8; 10−6; 10−4; 10−2Þ GeV from top to bottom. In both panels, mν1 ¼ 0.1 eV and R ¼ I. The horizontal red dashed line
denotes the current experimental upper bound for μ → eγ, BRðμ → eγÞ < 5.7 × 10−13 [29]. Dotted lines represent nonperturbative
neutrino Yukawa couplings.
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maximum allowed value of BRðH → μτ̄Þ ∼ 10−11, for
MR ¼ 104 GeV.
The dependence of BRðH → μτ̄Þ and BRðμ → eγÞ on

the lightest neutrino mass mν1 is studied in Fig. 6, for
several values of μX with MR ¼ 104 GeV and R ¼ I.
For the chosen parameters in this figure, a similar
dependence on mν1 is observed in both observables, in
which there is a flat behavior with mν1 except for values

of mν1 ≳ 0.01 eV. For these values, the LFV rates
decrease as mν1 grows.
The behavior of BRðlm → lkγÞ with mν1 can be under-

stood from the fact that the flavor violation arises from the
nondiagonal terms of ðYνY

†
νÞkm. In the simplified case of real

R and UPMNS matrices, for diagonal and degenerateMR and
μX, and by using Eqs. (11) and (9), we find the following
simple expression for the nondiagonal km elements:

v2ðYνY
†
νÞkm

M2
R

≈

8>><
>>:

1
μX
ðUPMNS

ffiffiffiffiffiffiffiffiffiffi
Δm2

p
UT

PMNSÞkm; for m2
ν1 ≪ jΔm2

ijj;
1
μX

ðUPMNSΔm2UT
PMNSÞkm

2mν1

; for m2
ν1 ≫ jΔm2

ijj;
ð29Þ

where we have defined

Δm2 ≡ diagð0;Δm2
21;Δm2

31Þ; ð30Þ

and we have expanded properly mν2 and mν3 in Eq. (13) in
terms ofmν1 andΔm

2
ij. Therefore, using Eqs. (28)–(30), we

conclude that the BRðμ → eγÞ rates have a flat behavior
with mν1 for low values of mν1 ≲ 0.01 eV, but they
decrease withmν1 for larger values, explaining the observed
behavior in Fig. 6.
By taking into account all the behaviors learned above,

we have tried to find an approximate simple formula that
could explain the main features of the BRðH → μτ̄Þ rates.
As we have already said, in contrast to what we have seen
for the LFV radiative decays in Eq. (28), a simple func-
tional dependence being proportional to jðYνY

†
νÞ23j2 is not

enough to describe our results for the BRðH → μτ̄Þ rates.
Considering that, in the region where the Yukawa couplings
are large, the LFVHD rates are dominated by diagrams (1),
(8), and (10), we have looked for a simple expression that
could properly fit the contributions from these dominant
diagrams. From this fit we have found the following
approximate formula:

BRapprox
H→μτ̄ ¼ 10−7

v4

M4
R
jðYνY

†
νÞ23 − 5.7ðYνY

†
νYνY

†
νÞ23j2;

ð31Þ

which turns out to work reasonably well. In Fig. 7 we show
the predicted rates of BRðH → μτ̄Þ with (1) the full one-
loop formulas (dashed lines); (2) taking just the contribu-
tions from diagrams (1), (8), and (10) of Fig. 1 (solid lines);
and (3) using Eq. (31) (dotted lines). We see clearly that this
Eq. (31) reproduces extremely well the contributions from
diagrams (1), (8), and (10) and approximates reasonably
well the full rates. The approximation is pretty good indeed
for theMR region above the dips. The change of functional
behavior with MR in the two different MR regions, from
nearly flat with MR in the approximate result to fast
growing as ∼M4

R, also gives a reasonable approach to
the full result, as well as the appearance of dips. The
location of the dips is however not so accurately described
by the approximate formula, since in the region where the
cancellation among the diagrams (1), (8), and (10) takes
place the other diagrams (not considered in the fit) also
contribute. Overall, we find the approximate formula given
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FIG. 6 (color online). Branching ratios of H → μτ̄ (left panel) and μ → eγ (right panel) as functions of mν1 for different values of
μX ¼ ð10−8; 10−7; 10−5; 10−3Þ GeV from top to bottom. In both panels, MR ¼ 104 GeV and R ¼ I. The horizontal red dashed line
denotes the current experimental upper bound for μ → eγ, BRðμ → eγÞ < 5.7 × 10−13 [29]. Dotted lines represent nonperturbative
neutrino Yukawa couplings [see Eq. (16)].
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by Eq. (31) very useful for generic estimates in the ISS,
which could also be applied to other parametrizations of the
neutrino Yukawa couplings.
This particular choice for the fitting function can be

easily understood using the electroweak interaction basis of
Eq. (1) and applying the mass insertion approximation
(MIA). Looking at the finite contribution coming from
diagrams (1), (8), and (10), we can see that, at the lowest
order in the MIA, the Higgs decay amplitude has a similar
behavior to the dimension-six operator that governs the
LFV radiative decays, which is proportional to

v2ðYνY
†
νÞkm

M2
R

: ð32Þ

However, there are other contributions to the Higgs decays
that are not present in the case of the radiative decays,

owing to the different chiral structure of the lepton flavor
violating operators. For example, having two mass inser-
tions of LR type, one in each internal neutrino line of a loop
like that of diagram 1, will give a contribution to the
amplitude proportional to

v2ðYνY
†
νYνY

†
νÞkm

M2
R

: ð33Þ

Then, using again Eqs. (11) and (9), we find the following
simple expression:

v2ðYνY
†
νYνY

†
νÞkm

M2
R

¼ M2
R

v2μ2X
ðUPMNSΔm2UT

PMNSÞkm: ð34Þ

Thus, we can clearly see from the above result that the
second contribution in Eq. (31) is the one that dominates at
large MR and low μX, i.e., at large Yukawa couplings, and,
indeed, it reproduces properly the behavior of BRðH → μτ̄Þ
in this limit, with BR ∝ M4

R=μ
4
X. It is also independent of

mν1 , explaining the flat behavior in Fig. 6 for low values of
μX. Moreover, if the two contributions in Eq. (31) have
opposite signs, they will interfere destructively, leading to a
dip in the decay rate when both contributions are of the
same size. From Eqs. (29) and (34), we can deduce that the
position of the dip should verify M−2

R μX ∼ constant, which
is the behavior observed at largeMR in Figs. 4–5. The other
dips, which appear for MR ≃ 300 GeV in Fig. 4, come
from a destructive interference between the other diagrams,
as we have said.
Next, we display in Fig. 8 the dependence of theH → μτ̄

and μ → eγ decay rates on jθ1j for different values of
argθ1¼0;π=8;π=4, with MR¼104GeV, μX¼10−7 GeV,
and mν1 ¼ 0.1 eV. First of all, we highlight the flat
behavior of both LFV rates with jθ1j for real R matrix
(arg θ1 ¼ 0), which is a direct consequence of the degen-
eracy of MR and μX. In other words, the LFV rates for the
degenerate heavy neutrinos case are independent of R if it is
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FIG. 7 (color online). Comparison between the predicted rates
for BRðH → μτ̄Þ taking (1) the full one-loop formulas (dashed
lines); (2) just the contributions from diagrams (1), (8), and (10)
of Fig. 1 (solid lines); and (3) the approximate formula of Eq. (31)
(dotted lines).
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FIG. 8 (color online). Branching ratios of H → μτ̄ (left panel) and μ → eγ (right panel) as functions of jθ1j for different values of
arg θ1. In both panels, MR ¼ 104 GeV, μX ¼ 10−7 GeV, and mν1 ¼ 0.1 eV. The horizontal red dashed line denotes the current
experimental upper bound for μ → eγ, BRðμ → eγÞ < 5.7 × 10−13 [29]. Dotted lines represent nonperturbative neutrino Yukawa
couplings [see Eq. (16)].
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real. Once we abandon the real case and consider values of
arg θ1 different from zero, a strong dependence on jθ1j
appears. The larger jθ1j and/or arg θ1 are, the larger the
LFV rates become. On the other hand, only values of jθ1j
lower than π=32 with arg θ1 ¼ π=8 in this figure are
allowed by the μ → eγ constraint, which allows us to
reach values of BRðH → μτ̄Þ ∼ 10−12 at the most. We have
also explored the LFV rates as functions of complex θ2 and

θ3 and we have reached similar conclusions as for θ1.
Therefore, by choosing complex θ1;2;3 the LFV Higgs
decay rates that are allowed by the upper bounds on the
radiative decays do not increase with respect to the real
case, which is equal to the previous R ¼ I reference case,
due to the independence on real R, as we have already said.
Once we have studied the behavior of all the LFV

observables considered here with the most relevant parame-
ters,wenextpresent the results for themaximumallowedLFV
Higgs decay rates in the case of heavy degenerate neutrinos.
The plot in Fig. 9 shows the contour lines of BRðH → μτ̄Þ in
the ðMR; μXÞ plane for R ¼ I and mν1 ¼ 0.1 eV. The
horizontal area in pink is excluded by not respecting the
presentupperboundonBRðμ → eγÞ.Theobliquearea inblue
is excluded bynot respecting the perturbativity of the neutrino
Yukawa couplings. These contour lines summarize the
previously learned behavior with MR and μX, which lead to
the largest values for the LFVHD rates in the bottom right-
hand corner of the plot, i.e., at largeMR and small μX.We also
notice the appearance of dips in the ðMR; μXÞ plane that
correspond to the previously commented dips in the previous
figures. Themost important conclusion from this contour plot
is that the maximum allowed LFVHD rate is approximately
BRðH → μτ̄Þ ∼ 10−10 and it is found forMR ∼ 2 × 104 GeV
and μX ∼ 5 × 10−8 GeV.We have found similar conclusions
for BRðH → eτ̄Þ.

B. Hierarchical heavy neutrinos

The case of hierarchical heavy neutrinos refers here
to hierarchical masses among generations and it is
implemented by choosing hierarchical entries in the
MR ¼ diagðMR1

;MR2
;MR3

Þ matrix. As for the μX ¼
diagðμX1

; μX2
; μX3

Þ matrix that introduces the tiny splitting
within the heavy masses in the same generation we choose
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oblique area in blue is excluded by the perturbativity requirement
of the neutrino Yukawa couplings.
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FIG. 10 (color online). Predictions for the LFV decay rates as functions of MR3
in the hierarchical heavy neutrinos case with

MR1
< MR2

< MR3
. Left panel: BRðH → μτ̄Þ (upper blue line), BRðH → eτ̄Þ (middle dark brown line), BRðH → eμ̄Þ (lower red line).

Right panel: BRðτ → μγÞ (upper blue line), BRðμ → eγÞ (middle red line), BRðτ → eγÞ (lower dark brown line). The other input
parameters are set to μX ¼ 10−7 GeV, mν1 ¼ 0.1 eV, MR1

¼ 900 GeV, MR2
¼ 1000 GeV, and R ¼ I. The dotted lines in both panels

indicate nonperturbative neutrino Yukawa couplings. The horizontal dashed lines in the right panel are the present (90% C.L.) upper
bounds on the radiative decays: BRðτ → μγÞ < 4.4 × 10−8 [53] (blue line), BRðτ → eγÞ < 3.3 × 10−8 [53] (dark brown line), and
BRðμ → eγÞ < 5.7 × 10−13 [29] (red line).
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it here to be degenerate, μX1;2;3
¼ μX. We focus on the

normal hierarchy MR1
< MR2

< MR3
, since we have found

similar conclusions for other hierarchies.
The results for the LFV rates in the MR1

< MR2
< MR3

hierarchical case are shown in Fig. 10. This figure shows
that the behavior of the LFV rates in the hierarchical case
with respect to the heaviest neutrino mass MR3

is very
similar to the one found previously for the degenerate case
with respect to the common MR. The BRðH → lkl̄mÞ rates

grow fast withMR3
at largeMR3

> 3000 GeV, whereas the
BRðlm → lkγÞ rates stay flat with MR3

. Again, there are
dips in the BRðH → lkl̄mÞ rates due to the destructive
interferences among the contributing diagrams. We also
observe in this plot that, for the chosen parameters, the
size that the BRðH → lkl̄mÞ rates can reach in this hierar-
chical scenario is larger than in the previous degenerate
case. For instance, BRðH → μτ̄Þ reaches 10−9 at MR3

¼
3 × 104 GeV, to be compared with 10−10 at MR ¼
3 × 104 GeV that we got in Fig. 2 for the degenerate case.
We have found this same behavior of enhanced LFVHD
rates by approximately one order of magnitude in the
hierarchical case as compared to the degenerate case in
most of the explored parameter space regions.
This same enhancement can also be seen in the contour

plot in Fig. 11 where the maximum allowed BRðH → μτ̄Þ
rates reach values up to about 10−9 for MR1

¼ 900 GeV,
MR2

¼ 1000 GeV, MR3
¼ 3 × 104 GeV, μX ¼ 10−7 GeV,

and R ¼ I. Finally, since in the hierarchical case, in contrast
to the degenerate case, there is a dependence on the R
matrix even if it is real, we have also explored the behavior
with the real θ1;2;3 angles. We have found that for this
particular hierarchy, MR1

< MR2
< MR3

, there is near
independence with θ3 but there is a clear dependence with
θ1 and θ2, as it is illustrated in Fig. 12. These plots show
that the BRðH → lkl̄mÞ rates for θ1;2 ≠ 0 can indeed
increase or decrease with respect to the reference R ¼ I
case. In particular, for 0<θ1<π we find that BRðH → μτ̄Þ
is always lower than for R ¼ I, whereas BRðH → eτ̄Þ can
be one order of magnitude larger than for R ¼ I if θ1 is
near π=2. For the case of 0 < θ2 < π, we find again that
BRðH → μτ̄Þ is always lower than for R ¼ I, and
BRðH → eτ̄Þ can be one order of magnitude larger than
for R ¼ I if θ2 is near π=4. In this latter case, it is interesting
to notice that the region of θ2 close to π=4 where
BRðH → eτ̄Þ reaches the maximum value close to 10−9
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FIG. 11 (color online). Contour lines of BRðH → μτ̄Þ in the
ðMR3

; μXÞ plane for R ¼ I, mν1 ¼ 0.1 eV, MR1
¼ 900 GeV, and

MR2
¼ 1000 GeV. The horizontal area in pink is disallowed by

the upper bound on BRðμ → eγÞ. The oblique area in blue is
disallowed by the perturbativity requirement of the neutrino
Yukawa couplings.
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FIG. 12 (color online). Predictions for BRðH → μτ̄Þ (blue lines) and BRðH → eτ̄Þ (dark brown lines) rates as a function of real θ1 (left
panel) and θ2 (right panel). The other input parameters are set to μX ¼ 10−7 GeV, mν1 ¼ 0.1 eV, MR1

¼ 0.9 TeV, MR2
¼ 1 TeV,

MR3
¼ 30 TeV, θ2 ¼ θ3 ¼ 0 in the left panel and θ1 ¼ θ3 ¼ 0 in the right panel. The dotted lines indicate nonperturbative neutrino

Yukawa couplings and the crossed lines are excluded by the present upper bound on BRðμ → eγÞ. The solid lines are allowed by all the
constraints.
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is allowed by all the constraints. The results for the other
decay BRðH → eμ̄Þ are not shown here because they again
give much smaller rates, as in the degenerate case. We
have also tried other choices for the hierarchies among
the three heavy masses MR1;2;3

and we have found similar
conclusions.

C. ISS scenarios with large LFV Higgs decay rates

In this section we explore the implications on LFV Higgs
decays of going beyond the simplest previous hypothesis of
diagonal μX and MR mass matrices in the ISS model. In
particular, given the interesting possibility of decoupling
the low energy neutrino physics from the LFV physics in
this ISS model, by the proper choice of the input param-
eters, we will look for specific ISS scenarios with non-
diagonal μX while keeping diagonal MR that can provide
the largest LFV Higgs decay rates and at the same time be
compatible with the neutrino data and the present exper-
imental upper bounds on the radiative decays. Here, we will
focus on the case of degenerate MR and will explore only
the LFV Higgs decay channels with the largest rates,
namely, H → μτ̄ and H → eτ̄.
In order to localize the class of scenarios leading to large

and allowed LFVHD rates, we first make a rough estimate
of the expected maximal rates for the H → μτ̄ channel by
using our approximate formula of Eq. (31), which is given
just in terms of the neutrino Yukawa coupling matrix Yν

andMR. On the other hand, in order to keep the predictions
for the radiative decays below their corresponding exper-
imental upper bounds, we need to require a maximum value
for the nondiagonal ðYνY

†
νÞij entries. By using our approxi-

mate formula of Eq. (28) and the present bounds in
Eqs. (23)–(25), we get

v2ðYνY
†
νÞmax

12 =M2
R ∼ 2.5 × 10−5; ð35Þ

v2ðYνY
†
νÞmax

13 =M2
R ∼ 0.015; ð36Þ

v2ðYνY
†
νÞmax

23 =M2
R ∼ 0.017: ð37Þ

Then, in order to simplify our search, and given the above
relative strong suppression of the 12 element, it seems
reasonable to neglect it against the other off diagonal
elements. In that case, by assuming ðYνY

†
νÞ12 ≃ 0 we get

ðYνY
†
νYνY

†
νÞ23 ≃ ðYνY

†
νÞ22ðYνY

†
νÞ23 þ ðYνY

†
νÞ23ðYνY

†
νÞ33;
ð38Þ

and the approximate formula of Eq. (31) can then be
rewritten as follows:

BRapprox
H→μτ̄ ¼ 10−7

���� v2M2
R
ðYνY

†
νÞ23

����2
× j1–5.7ððYνY

†
νÞ22 þ ðYνY

†
νÞ33Þj2: ð39Þ

This equation clearly shows that the maximal BRðH → μτ̄Þ
rates are obtained for the maximum allowed values of
ðYνY

†
νÞ23, ðYνY

†
νÞ22, and ðYνY

†
νÞ33. Thus, before going to

any specific assumption for the Yν texture we can already
conclude on these maximal rates, by setting the maximum
allowed value for v2ðYνY

†
νÞmax

23 =M2
R to that given in Eq. (37)

and fixing the values of ðYνY
†
νÞ22 and ðYνY

†
νÞ33 to their

maximum allowed values that are implied by our pertur-
bativity condition in Eq. (16),

ðYνY
†
νÞmax

33 ¼ ðYνY
†
νÞmax

22 ¼ ðYνY
†
νÞmax

11 ¼ 18π: ð40Þ
This leads to our approximate prediction for the maximal
rates:

BRmax
H→μτ̄ ≃ 10−5: ð41Þ

We obtain similar conclusions for the H → eτ̄ channel.
This can be easily derived from the corresponding approxi-
mate formula that we have also checked to work quite well
in this case:

BRapprox
H→eτ̄ ¼ 10−7

v4

M4
R
jðYνY

†
νÞ13−5.7ðYνY

†
νYνY

†
νÞ13j2; ð42Þ

leading for ðYνY
†
νÞ12 ≃ 0 to

BRapprox
H→eτ̄ ¼ 10−7

���� v2M2
R
ðYνY

†
νÞ13

����2
× j1 − 5.7ððYνY

†
νÞ11 þ ðYνY

†
νÞ33Þj2; ð43Þ

and, therefore, by using Eqs. (36) and (40) we also obtain

BRmax
H→eτ̄ ≃ 10−5: ð44Þ

Having such large and allowed by data LFVHD rates of the
order of 10−5 for either H → μτ̄ or H → eτ̄ is clearly of
great interest if the high number of Higgs events mentioned
in the introduction is finally achieved.
In the rest of this section we will look for specific

examples where the above settings can be reached. In
particular, we will devote our attention to the search of
particular choices of Yν that fulfill all the above require-
ments. Once some specific inputs are provided for Yν and
MR, the proper μX matrix that ensures the agreement
between low energy neutrino predictions and data can be
easily obtained by solving Eqs. (7)–(8), which leads to

μX ¼ MT
Rm

−1
D U�

PMNSmνU
†
PMNSm

T
D
−1MR ð45Þ

withmD ¼ vYν andmν ¼ diagðmν1 ; mν2 ; mν3Þ. It should be
noted that for a generic Yν texture this μX will be in general
nondiagonal, as announced at the beginning of this
section.
For our purpose of looking for specific examples of Yν

maximizing the LFVHD rates and for simplicity in that
search, we focus next on the case of real Yν where

E. ARGANDA et al. PHYSICAL REVIEW D 91, 015001 (2015)

015001-14



ðYνY
†
νÞ ¼ ðYνYT

ν Þ, and we use a geometrical picture
where the elements of the Yukawa matrix can be interpreted
as the components of three vectors that we call here e,
μ, and τ:

Yν ¼

0
B@

Yν11 Yν12 Yν13

Yν21 Yν22 Yν23

Yν31 Yν32 Yν33

1
CA≡

0
B@

e

μ

τ

1
CA: ð46Þ

Then the relevant matrix for our LFV observables can be
written as

YYT ¼

0
B@

jej2 e · μ e · τ

μ · e jμj2 μ · τ

τ · e τ · μ jτj2

1
CA; ð47Þ

and consequently it can be completely determined by
setting six parameters: the modulus of the three vectors
ðjej; jμj; jτjÞ and the three angles ðθμe; θτe; θτμÞ defining
their relative orientations. It should be noticed, however,
that a real 3 × 3 Yukawa matrix should contain nine
parameters. The missing three parameters can be under-
stood in terms of an additional rotation O of the 3
vectors, which does not change their relative angles, and
therefore it has no physical consequences for our observ-
ables. Thus, one can write, generically, the neutrino
Yukawa matrix as a product of two matrices A and O,
with OOT ¼ OTO ¼ 1:

Yν ≡ A ·O; ð48Þ

YνYT
ν ¼ AAT: ð49Þ

We can use then this freedom to choose the two
orthogonal vectors ðe; μÞ in two of the axes, for instance
e in the X axis and μ in the Y axis, so that we can write

A ¼

0
BB@

e 0 0

0 μ 0

τcτe τcτμ τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2τe − c2τμ

q
1
CCA; ð50Þ

with jej≡ e, jμj≡ μ, jτj≡ τ, cτe ≡ cos θτe, and
cτμ ≡ cos θτμ. Then in our simple geometrical parametriza-
tion of the Yukawa matrix we get

YνYT
ν ¼ AAT ¼

0
B@

e2 0 eτcτe
0 μ2 μτcτμ

eτcτe μτcτμ τ2

1
CA; ð51Þ

which shows explicitly our requirement of ðYνYT
ν Þ12 ¼ 0

and whose simple form helps in the choice of the
textures maximizing the LFVHD rates. For instance,
it is obvious that by choosing parallel or antiparallel τ
and μ vectors, i.e., cτμ ¼ �1 we will get maximal
BRðH → μτ̄Þ, whereas, by choosing parallel or antipar-
allel τ and e vectors, i.e., cτe ¼ �1 we will get maximal
BRðH → eτ̄Þ. We also see that we will not be able to get
maximal rates for both channels simultaneously, since
the imposed orthogonality of e and μ implies some
correlations among the LFV in the e − τ and μ − τ
channels. Thus, for a given input θτμ, the maximum
LFV rates in the e − τ channel will occur at the
correlated value θτe ¼ π=2 − θτμ, and vice versa. As a
consequence, the maximum in BRðH → μτ̄Þ implies
a minimum in BRðH → eτ̄Þ, and a maximum in
BRðH → eτ̄Þ implies a minimum in BRðH → μτ̄Þ. We
find this result an interesting feature of this kind of
texture.
Finally, we provide some illustrative examples with large

LFVHD rates. All of them fulfil ðYνYT
ν Þ12 ¼ 0 and

ðYνYT
νYνYT

ν Þ12 ¼ 0, therefore ensuring the practically
vanishing LFV in the μ − e sector, i.e., leading all to
BRðμ → eγÞ ∼ 0 and BRðH → eμ̄Þ ∼ 0.
(1) Examples with large LFV μ − τ:
The following three textures, Yð1Þ

τμ , Y
ð2Þ
τμ , and Y

ð3Þ
τμ , provide

large LFV in the μ − τ sector, and practically vanishing
LFV in the e − τ sector, since they all have e · τ ¼ 0:

Yð1Þ
τμ ¼

ffiffiffiffiffiffi
6π

p
0
B@

0 1 −1
0.9 1 1

1 1 1

1
CA; Yð2Þ

τμ ¼
ffiffiffiffiffiffi
6π

p
0
B@

0 1 1

1 1 −1
−1 1 −1

1
CA; Yð3Þ

τμ ¼
ffiffiffiffiffiffi
6π

p
0
B@

0 −1 1

−1 1 1

0.8 0.5 0.5

1
CA: ð52Þ

These textures Yð1;2;3Þ
τμ can be obtained by choosing Að1;2;3Þ

τμ matrices like the A matrix in Eq. (50) with eð1;2;3Þ ¼
ð ffiffiffiffiffiffiffiffi

12π
p

;
ffiffiffiffiffiffiffiffi
12π

p
;

ffiffiffiffiffiffiffiffi
12π

p Þ, μð1;2;3Þ ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffi
17.4π

p
;

ffiffiffiffiffiffiffiffi
18π

p
;

ffiffiffiffiffiffiffiffi
18π

p Þ, τð1;2;3Þ ¼ ð ffiffiffiffiffiffiffiffi
18π

p
;

ffiffiffiffiffiffiffiffi
18π

p
;

ffiffiffiffiffiffiffiffiffi
6.4π

p Þ, and cð1;2;3Þτμ ¼ð0.98;0.33;0.025Þ,
respectively; and then applying the corresponding rotation Oτμ ¼ ðA−1

τμ ÞYτμ.
(2) Examples with large LFV e − τ:
The following three textures, Yð1Þ

τe , Y
ð2Þ
τe , and Y

ð3Þ
τe , provide large LFV in the e − τ sector, and practically vanishing LFV in

the μ − τ sector, since they all have τ · μ ¼ 0:
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Yð1Þ
τe ¼

ffiffiffiffiffiffi
6π

p
0
B@

0.9 1 1

0 1 −1
1 1 1

1
CA; Yð2Þ

τe ¼
ffiffiffiffiffiffi
6π

p
0
B@

1 1 −1
0 1 1

−1 1 −1

1
CA; Yð3Þ

τe ¼
ffiffiffiffiffiffi
6π

p
0
B@

−1 1 1

0 −1 1

0.8 0.5 0.5

1
CA: ð53Þ

These textures Yð1;2;3Þ
τe can be obtained by choosing Að1;2;3Þ

τe

matrices like the A matrix in Eq. (50) with eð1;2;3Þ ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffi

17.4π
p

;
ffiffiffiffiffiffiffiffi
18π

p
;

ffiffiffiffiffiffiffiffi
18π

p Þ, μð1;2;3Þ ¼ ð ffiffiffiffiffiffiffiffi
12π

p
;

ffiffiffiffiffiffiffiffi
12π

p
;

ffiffiffiffiffiffiffiffi
12π

p Þ,
τð1;2;3Þ ¼ ð ffiffiffiffiffiffiffiffi

18π
p

;
ffiffiffiffiffiffiffiffi
18π

p
;

ffiffiffiffiffiffiffiffiffi
6.4π

p Þ, and cð1;2;3Þτe ¼ ð0.98;
0.33; 0.025Þ, respectively; and then applying the corre-
sponding rotation Oτe ¼ A−1

τe Yτe.
We present our predictions for the LFVHD rates in our

above selected examples in Fig. 13 as a function of the
degenerate right-handed neutrino mass MR. For these
predictions we have used the full one-loop formulas. We
have also checked that the approximate formulas in
Eqs. (31) and (42) give a quite good estimate of these
BRs in the largeMR region, with deviations with respect to
the full result smaller than 10% forMR > 6 TeV. The main
conclusion from these plots is that with these specific
Yukawa textures one can indeed reach large LFVHD rates
of the order of 10−5 and still be compatible with all the
bounds from radiative decays. The textures Yτμ ðYτeÞ
corresponding to lower cτμ ðcτeÞ allow for lowerMR values

and vice versa. Thus, Yð1Þ
τμ ðYð1Þ

τe Þ leads the maximum
allowed BRðH → μτ̄Þ (BRðH → eτ̄Þ) rates for MR around

10 TeV (11 TeV), Yð2Þ
τμ ðYð2Þ

τe Þ around 5.5 TeV (6 TeV), and

Yð3Þ
τμ ðYð3Þ

τe Þ around 2 TeV (2.5 TeV).
The above textures are just some selected examples,

among many possibilities, but the important feature is that
they will all provide maximum allowed rates of around
10−5. We have also checked that by selecting examples
with hierarchical MR1

, MR2
, MR3

masses we do not obtain
larger maximum allowed rates. Thus, our conclusion is
quite generic for the maximum allowed LFVHD rates in the

ISS models. The other generic feature that is worth
mentioning is that, given the correlated rates found between
BRmaxðH → μτ̄Þ and BRmaxðτ → μγÞ [similarly, between
BRmaxðH → eτ̄Þ and BRmaxðτ → eγÞ], if an improved
future upper experimental bound on BRðτ → μγÞ [simi-
larly, on BRðτ → eγÞ] is provided, this will be intermedi-
ately translated into a smaller maximal allowed value for
BRðH → μτ̄Þ [similarly, for BRðH → eτ̄Þ].

V. CONCLUSIONS

In this paper we have studied the LFV Higgs decaysH →
lkl̄m within the context of the inverse seesaw model where
three additional pairs (one pair per generation) of massive
right-handed singlet neutrinos are added to the standard
model particle content. We have presented a full one-loop
computation of the BRðH → lkl̄mÞ rates for the three
possible channels, lkl̄m ¼ μτ̄; eτ̄; eμ̄, and have analyzed in
full detail the predictions as functions of the various relevant
ISS parameters. The most relevant parameters for LFV have
been found to be MR and Yν. In addition, we have required
that the input parameters of this ISS model be compatible
with the present neutrino data and other constraints, like
perturbativity of the neutrino Yukawa couplings and the
present bounds for the three radiative decays μ → eγ,
τ → eγ, and τ → μγ. To take control on this last requirement,
we have studied along this paper in parallel to the LFVHiggs
decays the correlated one-loop predictions for the radiative
decays, lm → lkγ, within this same ISS context. We have
explored the ISS parameter space and consider both kinds of
scenarios for the right-handed neutrinos, with either degen-
erate or hierarchical masses. First, we have considered the

FIG. 13 (color online). Examples in the ISS with large LFVHD rates obtained using the full one-loop formulas. Left panel: BRðH → μτ̄Þ
versusMR for Yð1Þ

τμ (upper green line), Yð2Þ
τμ (middle red line) and Yð3Þ

τμ (lower blue line) given in Eq. (52). Dotted lines indicate disallowed

input values leading to BRðτ → μγÞ above the present experimental bound in Eq. (25). Right panel: BRðH → eτ̄Þ versus MR for Yð1Þ
τe

(upper green line), Yð2Þ
τe (middle red line), and Yð3Þ

τe (lower blue line) given in Eq. (53). Dotted lines indicate disallowed input values leading
to BRðτ → eγÞ above the present experimental bound in Eq. (24). Solid lines indicate predictions allowed by all the constraints.
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simplest case of diagonal MR and μX matrices. In this case,
we conclude that the largest maximum LFV Higgs decay
rates within the ISS that are allowed by all the constraints are
for BRðH → eτ̄Þ and BRðH → μτ̄Þ and reach at most 10−10

for the degenerate heavy neutrino case and 10−9 for the
hierarchical case. Second, we have explored more general
ISS scenarios with nondiagonal μX matrices that we have
found more promising for LFVHD searches. These can also
accommodate successfully the low energy neutrino data, and
be compatiblewith the present bounds on the radiative decays
and with the perturbativity bounds on the neutrino Yukawa
couplings. We have demonstrated that in this kind of ISS
scenarios there are solutions with much larger allowed
LFVHD rates than in the previous cases, leading to maximal
allowed rates of around 10−5 for either BRðH → μτ̄Þ or
BRðH → eτ̄Þ. Assuming in addition CP conservation in
these scenarios, the final LFVHD rates should be multiplied
by a factor of 2 if the CP conjugate channels BRðH → τμ̄Þ
and BRðH → τēÞ are also considered. Finally, we have also
provided a few particular examples where the predicted rates
with the full one-loop formulas indeed give such a large
LFVHD rate of ∼10−5, for values of MR in the interval
(1 TeV, 10 TeV). We certainly find these LFVHD rates and
MR values interesting, given the expected extremely high
statistics of up to hundreds of millions of Higgs bosons that

will be produced at the future colliders, allowing for searches
of rareHiggs decays, and the potential of LHC to explore new
particles at the TeV region.
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APPENDIX ANALYTICAL EXPRESSIONS OF
THE FORM FACTORS

For completeness, we collect here the analytical results
for the LFV Higgs decay form factors in the Feynman ’t
Hooft gauge and expressed in the physical basis. These
formulas are taken from Ref. [39].

Fð1Þ
L ¼ g2

4m3
W

1

16π2
BlkniB

�
lmnj

fmlkmnj ½ðmni þmnjÞReðCninjÞ þ iðmnj −mniÞImðCninjÞ� ~C0

þ ðC12 − C11Þ½ðmni þmnjÞReðCninjÞð−m3
lk
mnj −mnimlkm

2
lm
þmnim

2
njmlk þm2

nimnjmlkÞ
þ iðmnj −mniÞImðCninjÞð−m3

lk
mnj þmnimlkm

2
lm
−mnim

2
njmlk þm2

nimnjmlkÞ�g;

Fð1Þ
R ¼ g2

4m3
W

1

16π2
BlkniB

�
lmnj

fmnimlm ½ðmni þmnjÞReðCninjÞ − iðmnj −mniÞImðCninjÞ� ~C0

þ C12½ðmni þmnjÞReðCninjÞðm3
lm
mni −mnim

2
njmlm −m2

nimnjmlm þmnjm
2
lk
mlmÞ

þ iðmnj −mniÞImðCninjÞð−m3
lm
mni þmnim

2
njmlm −m2

nimnjmlm þmnjm
2
lk
mlmÞ�g;

where C11;12 ¼ C11;12ðm2
lk
; m2

H;m
2
W;m

2
ni ; m

2
njÞ and ~C0 ¼ ~C0ðm2

lk
; m2

H;m
2
W;m

2
ni ; m

2
njÞ.

Fð2Þ
L ¼ g2

2mW

1

16π2
BlkniB

�
lmnj

mlkf−mnj ½ðmni þmnjÞReðCninjÞ þ iðmnj −mniÞImðCninjÞ�C0

þ ðC12 − C11Þ½ðmni þmnjÞ2ReðCninjÞ þ iðmnj −mniÞ2ImðCninjÞ�g;

Fð2Þ
R ¼ −

g2

2mW

1

16π2
BlkniB

�
lmnj

mlmfmni ½ðmni þmnjÞReðCninjÞ − iðmnj −mniÞImðCninjÞ�C0

þ C12½ðmni þmnjÞ2ReðCninjÞ þ iðmnj −mniÞ2ImðCninjÞ�g;

where C0;11;12 ¼ C0;11;12ðm2
lk
; m2

H;m
2
W;m

2
ni ; m

2
njÞ.

Fð3Þ
L ¼ g2

16π2
BlkniB

�
lmni

mlkmWðC11 − C12Þ;

Fð3Þ
R ¼ g2

16π2
BlkniB

�
lmni

mlmmWC12;
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where C11;12 ¼ C11;12ðm2
lk
; m2

H;m
2
ni ; m

2
W;m

2
WÞ.

Fð4Þ
L ¼ −

g2

4mW

1

16π2
BlkniB

�
lmni

mlkfm2
lm
ðC12 − 2C11Þ þm2

niðC11 − C12Þ −m2
niC0g;

Fð4Þ
R ¼ −

g2

4mW

1

16π2
BlkniB

�
lmni

mlmf ~C0 þ 2m2
lm
C11 þm2

niC12 þ ðm2
lk
− 2m2

HÞðC11 − C12Þ þ 2m2
niC0g;

where C0;11;12 ¼ C0;11;12ðm2
lk
; m2

H;m
2
ni ; m

2
W;m

2
WÞ and ~C0 ¼ ~C0ðm2

lk
; m2

H;m
2
ni ; m

2
W;m

2
WÞ.

Fð5Þ
L ¼ −

g2

4mW

1

16π2
BlkniB

�
lmni

mlkf ~C0 þ 2m2
niC0 þ ðm2

ni þ 2m2
lk
ÞC11 þ ðm2

lm
−m2

ni − 2m2
HÞC12g;

Fð5Þ
R ¼ g2

4mW

1

16π2
BlkniB

�
lmni

mlmfm2
niC0 þm2

lk
C11 þ ðm2

lk
−m2

niÞC12g;

where C0;11;12 ¼ C0;11;12ðm2
lk
; m2

H;m
2
ni ; m

2
W;m

2
WÞ and ~C0 ¼ ~C0ðm2

lk
; m2

H;m
2
ni ; m

2
W;m

2
WÞ.

Fð6Þ
L ¼ g2

4m3
W

1

16π2
BlkniB

�
lmni

mlkm
2
Hfm2

niðC0 þ C11Þ þ ðm2
lm
−m2

niÞC12g;

Fð6Þ
R ¼ g2

4m3
W

1

16π2
BlkniB

�
lmni

mlmm
2
Hfm2

niðC0 þ C12Þ þm2
lk
ðC11 − C12Þg;

where C0;11;12 ¼ C0;11;12ðm2
lk
; m2

H;m
2
ni ; m

2
W;m

2
WÞ.

Fð7Þ
L ¼ g2

2mW

1

16π2
BlkniB

�
lmni

m2
lm
mlk

m2
lk
−m2

lm

B1;

Fð7Þ
R ¼ g2

2mW

1

16π2
BlkniB

�
lmni

m2
lk
mlm

m2
lk
−m2

lm

B1;

Fð8Þ
L ¼ g2

4m3
W

1

16π2
BlkniB

�
lmni

mlk

m2
lk
−m2

lm

fm2
lm
ðm2

lk
þm2

niÞB1 þ 2m2
nim

2
lm
B0g;

Fð8Þ
R ¼ g2

4m3
W

1

16π2
BlkniB

�
lmni

mlm

m2
lk
−m2

lm

fm2
lk
ðm2

lm
þm2

niÞB1 þm2
niðm2

lk
þm2

lm
ÞB0g;

where B0;1 ¼ B0;1ðm2
lk
; m2

ni ; m
2
WÞ.

Fð9Þ
L ¼ g2

2mW

1

16π2
BlkniB

�
lmni

m2
lm
mlk

m2
lm
−m2

lk

B1;

Fð9Þ
R ¼ g2

2mW

1

16π2
BlkniB

�
lmni

m2
lk
mlm

m2
lm
−m2

lk

B1;

Fð10Þ
L ¼ g2

4m3
W

1

16π2
BlkniB

�
lmni

mlk

m2
lm
−m2

lk

fm2
lm
ðm2

lk
þm2

niÞB1 þm2
niðm2

lk
þm2

lm
ÞB0g;

Fð10Þ
R ¼ g2

4m3
W

1

16π2
BlkniB

�
lmni

mlm

m2
lm
−m2

lk

fm2
lk
ðm2

lm
þm2

niÞB1 þ 2m2
nim

2
lk
B0g;

where B0;1 ¼ B0;1ðm2
lm
; m2

ni ; m
2
WÞ.
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~C0ðp2
2; p

2
1; m

2
1; m

2
2; m

2
3Þ≡ B0ðp2

1; m
2
2; m

2
3Þ þm2

1C0ðp2
2; p

2
1; m

2
1; m

2
2; m

2
3Þ:

Notice that we have corrected the global sign of Fð1Þ
L , which was a typo in [39].

In all the previous formulas, summation over neutrino indices is understood. These run as i; j ¼ 1;…9 for neutrinos, and
k;m ¼ 1;…3 for charged leptons. The loop function conventions are as in [58–60].
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