178 research outputs found

    How focus creates engagement in Primary Design and Technology Education: The effect of well-defined tasks and joint presentations on a class of nine to twelve years old pupils

    Get PDF
    During a Design and Technology class, engagement is both required to start creative hands-on work and a sign of pupil’s creative thinking. To find ways to achieve engagement, we can look to the Montessori tradition. Due to the fact that learning is regarded as feeding insight through experimenting, tasks have to offer pupils the opportunity to gain knowledge about isolated details of the learning situation. This is realised by brief, simple and objective tasks combined with liberty to approach the hands-on work in one’s own way. Applied to Design and Technology, we can define brief, simple and objective tasks with a focus on a technique as an isolated detail of the learning situation. Offering liberty during hands-on work enables creative thinking.  The deployment of well-defined tasks with a focus on a technique is possible by dividing a complex assignment into a collection of brief tasks with single problems and working towards single objectives in the topic, making use of a single technique. Such a collection is a format that has the potential to enable ongoing engagement.  This case-study researches the actual effect of a stepwise organised collection of tasks on the design performance of pupils of nine to twelve years old. The results show that the tasks turned out to be useful in initiating engagement. In combination with joint presentations, ongoing engagement was achieved resulting in well-considered designs and products. In addition, dialogue with disengaged pupils delivered solutions towards engagement. As a side-effect of dialogue the teacher-pupil relationships and the pupil-pupil relationships improved

    Connecting Domains in Concept-Context Learning: A model to analyse education situations

    Get PDF
    The use of context-concept education alongside existing approaches is valuable. In this article we introduce a threedomain model for concept-context learning that supports both the design process as well as the idea of concept learning. The model shows how practical and abstract knowledge should be combined to improve contextconcept learning. The model acknowledges the dual nature of products and the need to relate practical, concrete experiences to causal explanations. It distinguishes three domains: the social context, the concrete product and the abstract knowledge domain. Here, the model is used to analyze, explain and suggest improvements for training primary school teachers in the Netherlands. The research data from the in-service teacher training show how continuous movement between the three domains is needed to develop creative, socially relevant solutions. The training would be better aimed towards the needs of the learner if the connection between the theory, concrete experiences with products and the social context is made more visible and inviting

    A MicroRNA-1280/JAG2 Network Comprises a Novel Biological Target in High-Risk Medulloblastoma

    Get PDF
    Over-expression of PDGF receptors (PDGFRs) has been previously implicated in high-risk medulloblastoma (MB) pathogenesis. However, the exact biological functions of PDGFRα and PDGFRβ signaling in MB biology remain poorly understood. Here, we report the subgroup specific expression of PDGFRα and PDGFRβ and their associated biological pathways in MB tumors. c-MYC, a downstream target of PDGFRβ but not PDGFRα, is involved in PDGFRβ signaling associated with cell proliferation, cell death, and invasion. Concurrent inhibition of PDGFRβ and c-MYC blocks MB cell proliferation and migration synergistically. Integrated analysis of miRNA and miRNA targets regulated by both PDGFRβ and c-MYC reveals that increased expression of JAG2, a target of miR-1280, is associated with high metastatic dissemination at diagnosis and a poor outcome in MB patients. Our study may resolve the controversy on the role of PDGFRs in MB and unveils JAG2 as a key downstream effector of a PDGFRβ-driven signaling cascade and a potential therapeutic target

    Children’s Responses to Divergent and Convergent Design Feedback

    Get PDF
    In this paper, we explore the divergent and convergent nature of design feedback and the various responses to this feedback from a group of 24 young novice designers (primary school children age 9-11) taking part in a co-design project. Earlier research emphasizes that feedback can encourage a designer to take divergent as well as convergent paths during their design process (Cardoso, Eris, Badke-schaub, & Aurisicchio, 2014; Yilmaz & Daly, 2014, 2016). Yet our previous research shows, that feedback  given to primary school children while designing does not always spark creative thinking (Schut, Klapwijk, Gielen, Van Doorn, & De Vries, 2019). We presume that the responses we found might have been influenced by the type of feedback that preceded them. Therefore, we have elaborated on the results we’ve previously uncovered with an additional analysis of the same case study. This additional analysis shows that divergent feedback given by peers or a client will not necessarily promote divergent thinking processes, whereas convergent feedback will not necessarily promote convergent thinking. Furthermore, responses indicating resistance towards the feedback given were widespread. However, we believe that feedback from clients and peers can still be a fruitful strategy in learning to be creative and in promoting divergent thinking (DT) and convergent thinking (CT) and end with suggestions on how this might be achieved

    DNA copy number alterations in central primitive neuroectodermal tumors and tumors of the pineal region: an international individual patient data meta-analysis

    Get PDF
    Little is known about frequency, association with clinical characteristics, and prognostic impact of DNA copy number alterations (CNA) on survival in central primitive neuroectodermal tumors (CNS-PNET) and tumors of the pineal region. Searches of MEDLINE, Pubmed, and EMBASE—after the original description of comparative genomic hybridization in 1992 and July 2010—identified 15 case series of patients with CNS-PNET and tumors of the pineal region whose tumors were investigated for genome-wide CNA. One additional case study was identified from contact with experts. Individual patient data were extracted from publications or obtained from investigators, and CNAs were converted to a digitized format suitable for data mining and subgroup identification. Summary profiles for genomic imbalances were generated from case-specific data. Overall survival (OS) was estimated using the Kaplan-Meier method, and by univariable and multivariable Cox regression models. In their overall CNA profiles, low grade tumors of the pineal region clearly diverged from CNS-PNET and pineoblastoma. At a median follow-up of 89months, 7-year OS rates of CNS-PNET, pineoblastoma, and low grade tumors of the pineal region were 22.9±6, 0±0, and 87.5±12%, respectively. Multivariable analysis revealed that histology (CNS-PNET), age (≤2.5years), and possibly recurrent CNAs were associated with unfavorable OS. DNA copy number profiling suggests a close relationship between CNS-PNET and pineoblastoma. Low grade tumors of the pineal region differed from CNS-PNET and pineoblastoma. Due to their high biological and clinical variability, a coordinated prospective validation in future studies is necessary to establish robust risk factor

    Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas

    Get PDF
    Medulloblastoma is the most common malignant brain tumor in childhood. Molecular studies from several groups around the world demonstrated that medulloblastoma is not one disease but comprises a collection of distinct molecular subgroups. However, all these studies reported on different numbers of subgroups. The current consensus is that there are only four core subgroups, which should be termed WNT, SHH, Group 3 and Group 4. Based on this, we performed a meta-analysis of all molecular and clinical data of 550 medulloblastomas brought together from seven independent studies. All cases were analyzed by gene expression profiling and for most cases SNP or array-CGH data were available. Data are presented for all medulloblastomas together and for each subgroup separately. For validation purposes, we compared the results of this meta-analysis with another large medulloblastoma cohort (n = 402) for which subgroup information was obtained by immunohistochemistry. Results from both cohorts are highly similar and show how distinct the molecular subtypes are with respect to their transcriptome, DNA copy-number aberrations, demographics, and survival. Results from these analyses will form the basis for prospective multi-center studies and will have an impact on how the different subgroups of medulloblastoma will be treated in the future

    The RNA-Binding Protein Musashi1 Affects Medulloblastoma Growth via a Network of Cancer- Related Genes and Is an Indicator of Poor Prognosis

    Get PDF
    Musashi1 (Msi1) is a highly conserved RNA-binding protein that is required during the development of the nervous system. Msi1 has been characterized as a stem cell marker, controlling the balance between self-renewal and differentiation, and has also been implicated in tumorigenesis, being highly expressed in multiple tumor types. We analyzed Msi1 expression in a large cohort of medulloblastoma samples and found that Msi1 is highly expressed in tumor tissue compared with normal cerebellum. Notably, high Msi1 expression levels proved to be a sign of poor prognosis. Msi1 expression was determined to be particularly high in molecular subgroups 3 and 4 of medulloblastoma. We determined that Msi1 is required for tumorigenesis because inhibition of Msi1 expression by small-interfering RNAs reduced the growth of Daoy medulloblastoma cells in xenografts. To characterize the participation of Msi1 in medulloblastoma, we conducted different high-throughput analyses. Ribonucleoprotein immunoprecipitation followed by microarray analysis (RIP-chip) was used to identify mRNA species preferentially associated with Msi1 protein in Daoy cells. We also used cluster analysis to identify genes with similar or opposite expression patterns to Msi1 in our medulloblastoma cohort. A network study identified RAC1, CTGF, SDCBP, SRC, PRL, and SHC1 as major nodes of an Msi1-associated network. Our results suggest that Msi1 functions as a regulator of multiple processes in medulloblastoma formation and could become an important therapeutic target

    Molecular subgroups of medulloblastoma: the current consensus

    Get PDF
    Medulloblastoma, a small blue cell malignancy of the cerebellum, is a major cause of morbidity and mortality in pediatric oncology. Current mechanisms for clinical prognostication and stratification include clinical factors (age, presence of metastases, and extent of resection) as well as histological subgrouping (classic, desmoplastic, and large cell/anaplastic histology). Transcriptional profiling studies of medulloblastoma cohorts from several research groups around the globe have suggested the existence of multiple distinct molecular subgroups that differ in their demographics, transcriptomes, somatic genetic events, and clinical outcomes. Variations in the number, composition, and nature of the subgroups between studies brought about a consensus conference in Boston in the fall of 2010. Discussants at the conference came to a consensus that the evidence supported the existence of four main subgroups of medulloblastoma (Wnt, Shh, Group 3, and Group 4). Participants outlined the demographic, transcriptional, genetic, and clinical differences between the four subgroups. While it is anticipated that the molecular classification of medulloblastoma will continue to evolve and diversify in the future as larger cohorts are studied at greater depth, herein we outline the current consensus nomenclature, and the differences between the medulloblastoma subgroups

    Defining the landscape of circular RNAs in neuroblastoma unveils a global suppressive function of MYCN

    Get PDF
    Circular RNAs (circRNAs) are a regulatory RNA class. While cancer-driving functions have been identified for single circRNAs, how they modulate gene expression in cancer is not well understood. We investigate circRNA expression in the pediatric malignancy, neuroblastoma, through deep whole-transcriptome sequencing in 104 primary neuroblastomas covering all risk groups. We demonstrate that MYCN amplification, which defines a subset of high-risk cases, causes globally suppressed circRNA biogenesis directly dependent on the DHX9 RNA helicase. We detect similar mechanisms in shaping circRNA expression in the pediatric cancer medulloblastoma implying a general MYCN effect. Comparisons to other cancers identify 25 circRNAs that are specifically upregulated in neuroblastoma, including circARID1A. Transcribed from the ARID1A tumor suppressor gene, circARID1A promotes cell growth and survival, mediated by direct interaction with the KHSRP RNA-binding protein. Our study highlights the importance of MYCN regulating circRNAs in cancer and identifies molecular mechanisms, which explain their contribution to neuroblastoma pathogenesis
    corecore