27 research outputs found

    Self-induced Scattering of Strahl Electrons in the Solar Wind

    Get PDF
    We investigate the scattering of strahl electrons by microinstabilities as a mechanism for creating the electron halo in the solar wind. We develop a mathematical framework for the description of electron-driven microinstabilities and discuss the associated physical mechanisms. We find that an instability of the oblique fast-magnetosonic/whistler (FM/W) mode is the best candidate for a microinstability that scatters strahl electrons into the halo. We derive approximate analytic expressions for the FM/W instability threshold in two different βc\beta_{\mathrm c} regimes, where βc\beta_{\mathrm c} is the ratio of the core electrons' thermal pressure to the magnetic pressure, and confirm the accuracy of these thresholds through comparison with numerical solutions to the hot-plasma dispersion relation. We find that the strahl-driven oblique FM/W instability creates copious FM/W waves under low-βc\beta_{\mathrm c} conditions when U0s3wcU_{0\mathrm s}\gtrsim 3w_{\mathrm c}, where U0sU_{0\mathrm s} is the strahl speed and wcw_{\mathrm c} is the thermal speed of the core electrons. These waves have a frequency of about half the local electron gyrofrequency. We also derive an analytic expression for the oblique FM/W instability for βc1\beta_{\mathrm c}\sim 1. The comparison of our theoretical results with data from the \emph{Wind} spacecraft confirms the relevance of the oblique FM/W instability for the solar wind. The whistler heat-flux, ion-acoustic heat-flux, kinetic-Alfv\'en-wave heat-flux, and electrostatic electron-beam instabilities cannot fulfill the requirements for self-induced scattering of strahl electrons into the halo. We make predictions for the electron strahl close to the Sun, which will be tested by measurements from \emph{Parker Solar Probe} and \emph{Solar Orbiter}.Comment: 11 pages, 11 figure

    Tracking a beam of electrons from the low solar corona into interplanetary space with the Low Frequency Array, Parker Solar Probe and 1 au spacecraft

    Full text link
    Type III radio bursts are the result of plasma emission from mildly relativistic electron beams propagating from the low solar corona into the heliosphere where they can eventually be detected in situ if they align with the location of a heliospheric spacecraft. Here we observe a type III radio burst from 0.1-16 MHz using the Parker Solar Probe (PSP) FIELDS Radio Frequency Spectrometer (RFS), and from 10-80 MHz using the Low Frequency Array (LOFAR). This event was not associated with any detectable flare activity but was part of an ongoing noise storm that occurred during PSP encounter 2. A deprojection of the LOFAR radio sources into 3D space shows that the type III radio burst sources were located on open magnetic field from 1.6-3 RR_\odot and originated from a specific active region near the East limb. Combining PSP/RFS observations with WIND/WAVES and Solar Terrestrial Relations Observatory (STEREO)/WAVES, we reconstruct the type III radio source trajectory in the heliosphere interior to PSP's position, assuming ecliptic confinement. An energetic electron enhancement is subsequently detected in situ at the STEREO-A spacecraft at compatible times although the onset and duration suggests the individual burst contributes a subset of the enhancement. This work shows relatively small-scale flux emergence in the corona can cause the injection of electron beams from the low corona into the heliosphere, without needing a strong solar flare. The complementary nature of combined ground and space-based radio observations, especially in the era of PSP, is also clearly highlighted by this study.Comment: 17 pages, 10 figures, Submitted to ApJ, April 15 202

    The statistical properties of solar wind temperature parameters near 1 AU

    Full text link
    We present a long-duration (\sim10 years) statistical analysis of the temperatures, plasma betas, and temperature ratios for the electron, proton, and alpha-particle populations observed by the \emph{Wind} spacecraft near 1 AU. The mean(median) scalar temperatures are Te,totT{\scriptstyle_{e, tot}} == 12.2(11.9) eV, Tp,totT{\scriptstyle_{p, tot}} == 12.7(8.6) eV, and Tα,totT{\scriptstyle_{\alpha, tot}} == 23.9(10.8) eV. The mean(median) total plasma betas are βe,tot\beta{\scriptstyle_{e, tot}} == 2.31(1.09), βp,tot\beta{\scriptstyle_{p, tot}} == 1.79(1.05), and βα,tot\beta{\scriptstyle_{\alpha, tot}} == 0.17(0.05). The mean(median) temperature ratios are (Te/Tp)tot\left(T{\scriptstyle_{e}}/T{\scriptstyle_{p}}\right){\scriptstyle_{tot}} == 1.64(1.27), (Te/Tα)tot\left(T{\scriptstyle_{e}}/T{\scriptstyle_{\alpha}}\right){\scriptstyle_{tot}} == 1.24(0.82), and (Tα/Tp)tot\left(T{\scriptstyle_{\alpha}}/T{\scriptstyle_{p}}\right){\scriptstyle_{tot}} == 2.50(1.94). We also examined these parameters during time intervals that exclude interplanetary (IP) shocks, times within the magnetic obstacles (MOs) of interplanetary coronal mass ejections (ICMEs), and times that exclude MOs. The only times that show significant alterations to any of the parameters examined are those during MOs. In fact, the only parameter that does not show a significant change during MOs is the electron temperature. Although each parameter shows a broad range of values, the vast majority are near the median. We also compute particle-particle collision rates and compare to effective wave-particle collision rates. We find that, for reasonable assumptions of wave amplitude and occurrence rates, the effect of wave-particle interactions on the plasma is equal to or greater than the effect of Coulomb collisions. Thus, wave-particle interactions should not be neglected when modeling the solar wind.Comment: 23 pages, 3 figures, 6 tables, submitted to Astrophys. J. Suppl. on Jan. 30, 201

    Electron Energy Partition across Interplanetary Shocks. III. Analysis

    Get PDF
    An analysis of model fit results of 15,210 electron velocity distribution functions (VDFs), observed within 2 hr of 52 interplanetary (IP) shocks by the Wind spacecraft near 1 au, is presented as the third and final part on electron VDFs near IP shocks. The core electrons and protons dominate in the magnitude and change in the partial-to-total thermal pressure ratio, with the core electrons often gaining as much or more than the protons. Only a moderate positive correlation is observed between the electron temperature and the kinetic energy change across the shock, while weaker, if any, correlations were found with any other macroscopic shock parameter. No VDF parameter correlated with the shock normal angle. The electron VDF evolves from a narrowly peaked core with flaring suprathermal tails in the upstream to either a slightly hotter core with steeper tails or much hotter flattop core with even steeper tails downstream of the weaker and strongest shocks, respectively. Both quasi-static and fluctuating fields are examined as possible mechanisms modifying the VDF, but neither is sufficient alone. For instance, flattop VDFs can be generated by nonlinear ion acoustic wave stochastic acceleration (i.e., inelastic collisions), while other work suggested they result from the combination of quasi-static and fluctuating fields. This three-part study shows that not only are these systems not thermodynamic in nature; even kinetic models may require modification to include things like inelastic collision operators to properly model electron VDF evolution across shocks or in the solar wind.Peer reviewe

    Electron Energy Partition across Interplanetary Shocks. II. Statistics

    Get PDF
    A statistical analysis of 15,210 electron velocity distribution function (VDF) fits, observed within +/- 2 hr of 52 interplanetary (IP) shocks by the Wind spacecraft near 1 au, is presented. This is the second in a three-part series on electron VDFs near IP shocks. The electron velocity moment statistics for the dense, low-energy core, tenuous, hot halo, and field-aligned beam/strahl are a statistically significant list of values illustrated with both histograms and tabular lists for reference and baselines in future work. Given the large statistics in this investigation, the beam/strahl fit results in the upstream are now the most comprehensive attempt to parameterize the beam/strahl electron velocity moments in the ambient solar wind. The median density, temperature, beta, and temperature anisotropy values for the core(halo)[beam/strahl] components, with subscripts ec(eh)[eb], of all fit results, respectively, are n(ec(h)[b]) similar to 11.3(0.36)[0.17] cm(-3), T-ec(h)[b],T-tot similar to 14.6(48.4)[40.2] eV, beta(ec(h)[b],tot) similar to 0.93(0.11)[0.05], and Alpha(ec(h)[b]) similar to 0.98(1.03)[0.93]. This work will also serve as a 1 au baseline and reference for missions like Parker Solar Probe and Solar Orbiter.Peer reviewe

    Electron Energy Partition across Interplanetary Shocks. I. Methodology and Data Product

    Get PDF
    Analyses of 15,314 electron velocity distribution functions (VDFs) within +/- 2 hr of 52 interplanetary (IP) shocks observed by the Wind spacecraft near 1 au are introduced. The electron VDFs are fit to the sum of three model functions for the cold dense core, hot tenuous halo, and field-aligned beam/strahl component. The best results were found by modeling the core as either a bi-kappa or a symmetric (or asymmetric) bi-self-similar VDF, while both the halo and beam/strahl components were best fit to bi-kappa VDF. This is the first statistical study to show that the core electron distribution is better fit to a self-similar VDF than a bi-Maxwellian under all conditions. The self-similar distribution deviation from a Maxwellian is a measure of inelasticity in particle scattering from waves and/or turbulence. The ranges of values defined by the lower and upper quartiles for the kappa exponents are k(ec) similar to 5.40-10.2 for the core, k(eh) similar to 3.58-5.34 for the halo, and k(eb) similar to 3.40-5.16 for the beam/strahl. The lower-to-upper quartile range of symmetric bi-self-similar core exponents is s(ec) similar to 2.00-2.04, and those of asymmetric bi-self-similar core exponents are p(ec) similar to 2.20-4.00 for the parallel exponent and q(ec) similar to 2.00-2.46 for the perpendicular exponent. The nuanced details of the fit procedure and description of resulting data product are also presented. The statistics and detailed analysis of the results are presented in Paper II and Paper III of this three-part study.Peer reviewe

    Parker Solar Probe Observations of High Plasma Beta Solar Wind from Streamer Belt

    Full text link
    In general, slow solar wind from the streamer belt forms a high plasma beta equatorial plasma sheet around the heliospheric current sheet (HCS) crossing, namely the heliospheric plasma sheet (HPS). Current Parker Solar Probe (PSP) observations show that the HCS crossings near the Sun could be full or partial current sheet crossing (PCS), and they share some common features but also have different properties. In this work, using the PSP observations from encounters 4 to 10, we identify streamer belt solar wind from enhancements in plasma beta, and we further use electron pitch angle distributions to separate it into HPS solar wind that around the full HCS crossings and PCS solar wind that in the vicinity of PCS crossings. Based on our analysis, we find that the PCS solar wind has different characteristics as compared with HPS solar wind: a) PCS solar wind could be non-pressure-balanced structures rather than magnetic holes, and the total pressure enhancement mainly results from the less reduced magnetic pressure; b) some of the PCS solar wind are mirror unstable; c) PCS solar wind is dominated by very low helium abundance but varied alpha-proton differential speed. We suggest the PCS solar wind could originate from coronal loops deep inside the streamer belt, and it is pristine solar wind that still actively interacts with ambient solar wind, thus it is valuable for further investigations on the heating and acceleration of slow solar wind

    The Structure and Origin of Switchbacks: Parker Solar Probe Observations

    Full text link
    Switchbacks are rapid magnetic field reversals that last from seconds to hours. Current Parker Solar Probe (PSP) observations pose many open questions in regards to the nature of switchbacks. For example, are they stable as they propagate through the inner heliosphere, and how are they formed? In this work, we aim to investigate the structure and origin of switchbacks. In order to study the stability of switchbacks, we suppose the small scale current sheets therein may work to braid and stabilize the switchbacks. Thus, we use the partial variance of increments method to identify the small scale current sheets, and then compare their distributions in switchbacks. With more than one thousand switchbacks identified with PSP observations in seven encounters, we find many more current sheets inside than outside switchbacks, indicating that these micro-structures should work to stabilize the S-shape structures of switchbacks. Additionally, with the helium measurements, we study the variations of helium abundance ratios and alpha-proton differential speeds to trace switchbacks to their origins. We find both helium-rich and helium-poor populations in switchbacks, implying the switchbacks could originate from both closed and open magnetic field regions in the Sun. Moreover, we observe that the alpha-proton differential speeds also show complex variations as compared to the local Alfv\'en speed. The joint distributions of both parameters show that low helium abundance together with low differential speed is the dominant state in switchbacks. The presence of small scale current sheets in switchbacks along with the helium features are in line with the hypothesis that switchbacks could originate from the Sun via interchange reconnection process. However, other formation mechanisms are not excluded
    corecore