97 research outputs found

    The curious morphology and orientation of Orion proplyd HST-10

    Full text link
    HST-10 is one of the largest proplyds in the Orion Nebula and is located approximately 1' SE of the Trapezium. Unlike other proplyds in Orion, however, the long-axis of HST-10 does not align with theta 1 C Ori, but is instead aligned with the rotational axis of the HST-10 disk. This cannot be easily explained using current photo-evaporation models. In this letter, we present high spatial resolution near-infrared images of the Orion proplyd HST-10 using Keck/NIRC2 with the Laser Guide Star Adaptive Optics system, along with multi-epoch analysis of HH objects near HST-10 using Hubble Space Telescope WFPC2 and ACS cameras. Our narrow-band near-IR images resolve the proplyd ionization front (IF) and circumstellar disk down to 23 AU at the distance to Orion in Br gamma, He I, H_2, and PAH emission. Br gamma and He I emission primarily trace the IF (with the disk showing prominently in silhouette), while the H_2 and PAH emission trace the surface of the disk itself. PAH emission also traces small dust grains within the proplyd envelope which is asymmetric and does not coincide with the IF. The curious morphology of the PAH emission may be due to UV-heating by both theta 1C Ori and theta 2A Ori. Multi-epoch HST images of the HST-10 field show proper motion of 3 knots associated with HH 517, clearly indicating that HST-10 has a jet. We postulate that the orientation of HST-10 is determined by the combined ram-pressure of this jet and the FUV-powered photo-ablation flow from the disk surface.Comment: 12 pages, 2 figures. Accepted for publication in ApJ Letters, 4 Nov 201

    The Slitmask Alignment Tool: robust, efficient, and astronomer-friendly software for aligning multi-object slitmasks

    Get PDF
    Multi-object spectroscopy via custom slitmasks is a key capability on three instruments at the W. M. Keck Observatory. Before observers can acquire spectra they must complete a complex procedure to align each slit with its corresponding science target. We developed the Slitmask Alignment Tool (SAT), to replace a complex, inefficient, and error-prone slitmask alignment process that often resulted in lost sky time for novice and experienced observers alike. The SAT accomplishes rapid initial mask alignment, prevents field misidentification, accurately predicts alignment box image locations, corrects for flexure-induced image displacement, verifies the instrument and exposure configuration, and accommodates both rectangular and trapezoidal alignment box shapes. The SAT is designed to lead observers through the alignment process and coordinate image acquisition with instrument and telescope moves to improve efficiencies. By simplifying the process to just a few mouse clicks, the SAT enables even novice observers to achieve robust, efficient, and accurate alignment of slitmasks on all three Keck instruments supporting multislit spectroscopy, saving substantial observing time

    Thermal Dust Emission from Proplyds, Unresolved Disks, and Shocks in the Orion Nebula

    Full text link
    We present a new 11.7 micron mosaic image of the Orion nebula obtained with T-ReCS on Gemini South. The map includes the BN/KL region, the Trapezium, and OMC-1 South. Excluding BN/KL, we detect 91 point sources, with 27 known proplyds and over 30 ``naked'' stars showing no extended structure in HST images. Within the region we surveyed, 80 percent of known proplyds show detectable emission, almost 40 percent of naked stars are detected at 11.7 micron, and the fraction of all visible sources with IR excess emission is roughly 50 percent. Thermal dust emission from stars with no extended structure in HST images means that they have dust disks comparable to the size of our solar system. Proplyds and stars with IR excess show a clear anti-correlation in their spatial distribution, with proplyds clustered close to theta1C, and other infrared sources found farther away. We suspect that the clustered proplyds trace the youngest 0.5 Myr age group associated with the Trapezium, while the more uniformly-distributed sources trace the older 1-2 Myr population of the ONC. This suggests that small disks persist for a few Myr in irradiated environments, and hints that hierarchical sub-clustering has been important. Within 30 arcsec of theta1C, all proplyds are detected at 11.7 micron. The star theta1D is associated with the most prominent mid-IR dust arc in the nebula. We propose that this arc is the consequence of theta1D being the closest member of the Trapezium to the background cloud. Finally, we detect dust emission from HH jets in Orion, including HH202, HH529, HH513, and HH514. This is the first detection of mid-IR continuum emission from dust in the body of a collimated HH jet or bow shock.Comment: accepted by AJ. 27 pages, 11 figs, 4 color figs. If you actually want to see the figures, download this version: ftp://origins.colorado.edu/pub/nathans/smith.trecs.pd

    Spectral classification of the brightest objects in the galactic star forming region W40

    Full text link
    We present high S/N, moderate resolution near-infrared spectra, as well as 10 micron imaging, for the brightest members of the central stellar cluster in the W40 HII region, obtained using the SpeX and MIRSI instruments at NASA's Infrared Telescope Facility. Using these observations combined with archival Spitzer Space Telescope data, we have determined the spectral classifications, extinction, distances, and spectral energy distributions for the brightest members of the cluster. Of the eight objects observed, we identify four main sequence (MS) OB stars, two Herbig Ae/Be stars, and two low-mass young stellar objects. Strong HeI absorption at 1.083 micron in the MS star spectra strongly suggests that at least some of these sources are in fact close binaries. Two out of the four MS stars also show significant infrared excesses typical of circumstellar disks. Extinctions and distances were determined for each MS star by fitting model stellar atmospheres to the SEDs. We estimate a distance to the cluster of between 455 and 535 pc, which agrees well with earlier (but far less precise) distance estimates. We conclude that the late-O star we identify is the dominant source of LyC luminosity needed to power the W40 HII region and is the likely source of the stellar wind that has blown a large (~4 pc) pinched-waist bubble observed in wide field mid-IR images. We also suggest that 3.6 cm radio emission observed from some of the sources in the cluster is likely not due to emission from ultra-compact HII regions, as suggested in other work, due to size constraints based on our derived distance to the cluster. Finally, we also present a discussion of the curious source IRS 3A, which has a very strong mid-IR excess (despite its B3 MS classification) and appears to be embedded in a dusty envelope roughly 2700 AU in size.Comment: Accepted for publication in The Astronomical Journal. 29 pages, 10 figure

    The Slitmask Alignment Tool: robust, efficient, and astronomer-friendly software for aligning multi-object slitmasks

    Get PDF
    Multi-object spectroscopy via custom slitmasks is a key capability on three instruments at the W. M. Keck Observatory. Before observers can acquire spectra they must complete a complex procedure to align each slit with its corresponding science target. We developed the Slitmask Alignment Tool (SAT), to replace a complex, inefficient, and error-prone slitmask alignment process that often resulted in lost sky time for novice and experienced observers alike. The SAT accomplishes rapid initial mask alignment, prevents field misidentification, accurately predicts alignment box image locations, corrects for flexure-induced image displacement, verifies the instrument and exposure configuration, and accommodates both rectangular and trapezoidal alignment box shapes. The SAT is designed to lead observers through the alignment process and coordinate image acquisition with instrument and telescope moves to improve efficiencies. By simplifying the process to just a few mouse clicks, the SAT enables even novice observers to achieve robust, efficient, and accurate alignment of slitmasks on all three Keck instruments supporting multislit spectroscopy, saving substantial observing time

    The MOSFIRE Deep Evolution Field (MOSDEF) Survey: Rest-Frame Optical Spectroscopy for ~1500 H-Selected Galaxies at 1.37 < z < 3.8

    Full text link
    In this paper we present the MOSFIRE Deep Evolution Field (MOSDEF) survey. The MOSDEF survey aims to obtain moderate-resolution (R=3000-3650) rest-frame optical spectra (~3700-7000 Angstrom) for ~1500 galaxies at 1.37<z<3.80 in three well-studied CANDELS fields: AEGIS, COSMOS, and GOODS-N. Targets are selected in three redshift intervals: 1.37<z<1.70, 2.09<z<2.61, and 2.95<z<3.80, down to fixed H_AB (F160W) magnitudes of 24.0, 24.5 and 25.0, respectively, using the photometric and spectroscopic catalogs from the 3D-HST survey. We target both strong nebular emission lines (e.g., [OII], Hbeta, [OIII], 5008, Halpha, [NII], and [SII]) and stellar continuum and absorption features (e.g., Balmer lines, Ca-II H and K, Mgb, 4000 Angstrom break). Here we present an overview of our survey, the observational strategy, the data reduction and analysis, and the sample characteristics based on spectra obtained during the first 24 nights. To date, we have completed 21 masks, obtaining spectra for 591 galaxies. For ~80% of the targets we derive a robust redshift from either emission or absorption lines. In addition, we confirm 55 additional galaxies, which were serendipitously detected. The MOSDEF galaxy sample includes unobscured star-forming, dusty star-forming, and quiescent galaxies and spans a wide range in stellar mass (~10^9-10^11.5 Msol) and star formation rate (~10^0-10^3 Msol/yr). The spectroscopically confirmed sample is roughly representative of an H-band limited galaxy sample at these redshifts. With its large sample size, broad diversity in galaxy properties, and wealth of available ancillary data, MOSDEF will transform our understanding of the stellar, gaseous, metal, dust, and black hole content of galaxies during the time when the universe was most active.Comment: Accepted for publication in ApJS; 28 pages, 19 figures; MOSDEF spectroscopic redshifts available at http://mosdef.astro.berkeley.edu/Downloads.htm
    • …
    corecore