37 research outputs found

    Modular and predictable assembly of porous organic molecular crystals

    No full text
    Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules

    The IARC perspective on cervical cancer screening

    Get PDF
    In May 2018, the World Health Organization (WHO) called for a global initiative to eliminate cervical cancer as a public health problem. To achieve this goal, global scale-up of effective vaccination against the human papillomavirus (HPV) as well as screening for and treatment of cervical cancer are required. Cervical cancer screening was evaluated in 2005 by the International Agency for Research on Cancer (IARC) Handbooks program,1 and a reevaluation was deemed to be timely given the major advances in the field since then. The new handbook provides updated evaluations of the effectiveness of screening methods, which were used as a basis for the update of the WHO Guideline for Screening and Treatment of Cervical Pre-cancer Lesions for Cervical Cancer Prevention.2 We convened an IARC Working Group of 27 scientists from 20 countries to assess the evidence on the current approaches to and technologies used in cervical cancer screening with the use of the newly updated Handbooks Preamble3 (Fig. 1) and Table 1).Fil: Bouvard, Véronique. International Agency For Research On Cancer; FranciaFil: Wentzensen, Nicolas. National Cancer Institute; Estados UnidosFil: Mackie, Anne. Public Health England; Reino UnidoFil: Berkhof, Johannes. University of Amsterdam; Países BajosFil: Brotherton, Julia. VCS Foundation; Australia. University of Melbourne; AustraliaFil: Giorgi Rossi, Paolo. Azienda Unità Sanitaria Locale Di Reggio Emilia; ItaliaFil: Kupets, Rachel. University of Toronto; CanadáFil: Smith, Robert. American Cancer Society; Estados UnidosFil: Arrossi, Silvina. Centro de Estudios de Estado y Sociedad; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bendahhou, Karima. Casablanca Cancer Registry; MarruecosFil: Canfell, Karen. The University Of Sydney; AustraliaFil: Chirenje, Z. Mike. University Of Zimbabwe; ZimbabueFil: Chung, Michael H.. University of Emory; Estados UnidosFil: del Pino, Marta. Hospital Clinico de Barcelona; EspañaFil: de Sanjosé, Silvia. Program for Appropriate Technology in Health; Estados UnidosFil: Elfström, Miriam. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Franco, Eduardo L.. McGill University; CanadáFil: Hamashima, Chisato. Teikyo University; JapónFil: Hamers, Françoise F.. French National Public Health Agency; FranciaFil: Herrington, C. Simon. University of Edinburgh; Reino UnidoFil: Murillo, Raúl. Hospital Universitario San Ignacio; ColombiaFil: Sangrajrang, Suleeporn. National Cancer Institute; TailandiaFil: Sankaranarayanan, Rengaswamy. Research Triangle Institute; Estados UnidosFil: Saraiya, Mona. Centers for Disease Control and Prevention; Estados UnidosFil: Schiffman, Mark. National Cancer Institute; Estados UnidosFil: Zhao, Fanghui. Chinese Academy of Medical Sciences & Peking Union Medical College; ChinaFil: Arbyn, Marc. Sciensano; BélgicaFil: Prendiville, Walter. International Agency For Research On Cancer; FranciaFil: Indave Ruiz, Blanca I.. International Agency For Research On Cancer; FranciaFil: Mosquera Metcalfe, Isabel. International Agency For Research On Cancer; FranciaFil: Lauby Secretan, Béatrice. International Agency For Research On Cancer; Franci

    Semantic Knowledge Influences Prewired Hedonic Responses to Odors

    Get PDF
    Background Odor hedonic perception relies on decoding the physicochemical properties of odorant molecules and can be influenced in humans by semantic knowledge. The effect of semantic knowledge on such prewired hedonic processing over the life span has remained unclear. Methodology/Principal Findings The present study measured hedonic response to odors in different age groups (children, teenagers, young adults, and seniors) and found that children and seniors, two age groups characterized by either low level of (children) or weak access to (seniors) odor semantic knowledge, processed odor hedonics more on the basis of their physicochemical properties. In contrast, in teenagers and young adults, who show better levels of semantic odor representation, the role of physicochemical properties was less marked. Conclusions/Significance These findings demonstrate for the first time that the biological determinants that make an odor pleasant or unpleasant are more powerful at either end of the life span

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Get PDF
    Protein ubiquitination is a dynamic and reversibleprocess of adding single ubiquitin molecules orvarious ubiquitin chains to target proteins. Here,using multidimensional omic data of 9,125 tumorsamples across 33 cancer types from The CancerGenome Atlas, we perform comprehensive molecu-lar characterization of 929 ubiquitin-related genesand 95 deubiquitinase genes. Among them, we sys-tematically identify top somatic driver candidates,including mutatedFBXW7with cancer-type-specificpatterns and amplifiedMDM2showing a mutuallyexclusive pattern withBRAFmutations. Ubiquitinpathway genes tend to be upregulated in cancermediated by diverse mechanisms. By integratingpan-cancer multiomic data, we identify a group oftumor samples that exhibit worse prognosis. Thesesamples are consistently associated with the upre-gulation of cell-cycle and DNA repair pathways, char-acterized by mutatedTP53,MYC/TERTamplifica-tion, andAPC/PTENdeletion. Our analysishighlights the importance of the ubiquitin pathwayin cancer development and lays a foundation fordeveloping relevant therapeutic strategies

    The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma

    Get PDF
    corecore