15 research outputs found

    Genotype delimitation in the nod-idependent model legume Aeschynomene evenia

    Get PDF
    Research on the nitrogen-fixing symbiosis has been so far focused on two model legumes, Medicago truncatula and Lotus japonicus, which use a sophisticated infection process involving infection thread formation. However, in 25% of the legumes, the bacterial entry occurs more simply in an intercellular fashion. Among them, some semi-aquatic Aeschynomene species present the distinctive feature to form nitrogen-fixing nodules on both roots and stems following elicitation by photosynthetic bradyrhizobia that do not produce Nod factors. This interaction is believed to represent a living testimony of the ancestral state of the rhizobium-legume symbiosis. To decipher the molecular mechanisms of this unique Nod-independent nitrogen-fixing symbiosis, we previously identified A. evenia C. Wright as an appropriate model legume, because it displays all the requisites for molecular and genetic approaches. To advance the use of this new model legume species, here we characterized the intraspecific diversity found in A. evenia. For this, the accessions available in germplasm banks were collected and subjected to morphological investigations, genotyping with RAPD and SSR markers, molecular phylogenies using ITS and single nuclear gene sequences, and cross-compatibility tests. These combined analyses revealed an important intraspecific differentiation that led us to propose a new taxonomic classification for A. evenia comprising two subspecies and four varieties. The A. evenia ssp. evenia contains var. evenia and var. pauciciliata whereas A. evenia ssp. serrulata comprises var. serrulata and var. major. This study provides information to exploit efficiently the diversity encountered in A. evenia and proposes subsp. evenia as the most appropriate subspecies for future projects aimed at identifying plant determinants of the Nod-independent symbiotic process

    Radiation of the Nod-independent Aeschynomene relies on multiple allopolyploid speciation events

    No full text
    The semi-aquatic legumes belonging to the genus Aeschynomene constitute a premium system for investigating the origin and evolution of unusual symbiotic features such as stem nodulation and the presence of a Nod-independent infection process. This latter apparently arose in a single Aeschynomene lineage. But how this unique Nod-independent group then radiated is not yet known. We have investigated the role of polyploidy in Aeschynomene speciation via a case study of the pantropical A.indica and then extended the analysis to the other Nod-independent species. For this, we combined SSR genotyping, genome characterization through flow cytometry, chromosome counting, FISH and GISH experiments, molecular phylogenies using ITS and single nuclear gene sequences, and artificial hybridizations. These analyses demonstrate the existence of an A.indica polyploid species complex comprising A.evenia (C. Wright) (2n=2x=20), A.indica L. s.s. (2n=4x=40) and a new hexaploid form (2n=6x=60). This latter contains the two genomes present in the tetraploid (A.evenia and A.scabra) and another unidentified genome. Two other species, A.pratensis and A.virginica, are also shown to be of allopolyploid origin. This work reveals multiple hybridization/polyploidization events, thus highlighting a prominent role of allopolyploidy in the radiation of the Nod-independent Aeschynomene

    Large-scale transposon mutagenesis of photosynthetic <em>Bradyrhizobium</em> sp. strain ORS278 reveals new genetic loci putatively important for nod-independent symbiosis with <em>Aeschynomene</em> indica

    No full text
    International audiencePhotosynthetic Bradyrhizobium strains possess the unusual ability to form nitrogen-fixing nodules on a specific group of legumes in the absence of Nod factors. To obtain insight into the bacterial genes involved in this Nod-independent symbiosis, we screened 15,648 Tn5 mutants of Bradyrhizobium sp. strain ORS278 for clones affected in root symbiosis with Aeschynomene indica. From the 268 isolated mutants, 120 mutants were altered in nodule development (Ndv(-)) and 148 mutants were found to be deficient in nitrogen fixation (Fix(-)). More than 50% of the Ndv(-) mutants were found to be altered in purine biosynthesis, strengthening the previous hypothesis of a symbiotic role of a bacterial purine derivative during the Nod-independent symbiosis. The other Ndv(-) mutants were auxotrophic for pyrimidines and amino acids (leucine, glutamate, and lysine) or impaired in genes encoding proteins of unknown function. The Fix(-) mutants were found to be affected in a wide variety of cellular processes, including both novel (n = 56) and previously identified (n = 31) genes important in symbiosis. Among the novel genes identified, several were involved in the Calvin cycle, suggesting that CO(2) fixation could play an important role during this symbiosis

    Aeschynomene evenia, a model plant for studying the molecular genetics of the nod-independent Rhizobium-legume symbiosis

    No full text
    Research on the nitrogen-fixing symbiosis has been focused, thus far, on two model legumes, Medicago truncatula and Lotus japonicus, which use a sophisticated infection process involving infection thread formation. However, in 25% of the legumes, the bacterial entry occurs more simply in an intercellular fashion. Among them, some Aeschynomene spp. are nodulated by photosynthetic Bradyrhizohium spp. that do not produce Nod factors. This interaction is believed to represent a living testimony of the ancestral state of the rhizobium legume symbiosis. To decipher the mechanisms of this Nod-independent process, we propose Aeschynomene evenia as a model legume because it presents all the characteristics required for genetic and molecular analysis. It is a short-perennial and autogamous species, with a diploid and relatively small genome (2n = 20; 460 Mb/IC). A. evenia `IRFL6945' is nodulated by the well-characterized photosynthetic Bradyrhizobium sp. strain ORS278 and is efficiently transformed by Agrobacterizon rhizogenes. Aeschynomene evenia is genetically homozygous but polymorphic accessions were found. A manual hybridization procedure has been set up, allowing directed crosses. Therefore, it should be relatively straightforward to unravel the molecular determinants of the Nod-independent process in A. evenia. This should shed new light on the evolution of rhizobium legume symbiosis and could have important agronomic implications
    corecore