210 research outputs found

    Data augmentation and transfer learning to classify malware images in a deep learning context

    Get PDF
    In the past few years, malware classification techniques have shifted from shallow traditional machine learning models to deeper neural network architectures. The main benefit of some of these is the ability to work with raw data, guaranteed by their automatic feature extraction capabilities. This results in less technical expertise needed while building the models, thus less initial pre-processing resources. Nevertheless, such advantage comes with its drawbacks, since deep learning models require huge quantities of data in order to generate a model that generalizes well. The amount of data required to train a deep network without overfitting is often unobtainable for malware analysts. We take inspiration from image-based data augmentation techniques and apply a sequence of semantics-preserving syntactic code transformations (obfuscations) to a small dataset of programs to generate a larger dataset. We then design two learning models, a convolutional neural network and a bi-directional long short-term memory, and we train them on images extracted from compiled binaries of the newly generated dataset. Through transfer learning we then take the features learned from the obfuscated binaries and train the models against two state of the art malware datasets, each containing around 10 000 samples. Our models easily achieve up to 98.5% accuracy on the test set, which is on par or better than the present state of the art approaches, thus validating the approach

    Increase of CSF inflammatory profile in a case of highly active multiple sclerosis

    Get PDF
    BACKGROUND: Clinical and imaging follow-up coupled with cerebrospinal fluid (CSF) and possibly serum profiling could provide information on disease activity and disability evolution in multiple sclerosis patients. CASE PRESENTATION: We describe the case of a relapsing-remitting MS patient whose history was characterized by failure of several therapeutic approaches and sustained disease activity. By using a highly sensitive immunoassay methodology, we examined protein expression of 70 inflammatory/cytotoxic molecules in two consecutive paired CSF and serum samples, obtained respectively in 2006 and 2013. At disease diagnosis, elevated CSF protein levels of an inflammatory pattern, including CXCL13, CXCL12, IFNÎł, TNF, sTNFR1, IL8, sCD163, APRIL, BAFF, pentraxin III and MMP2 were found compared with a group of controls. At the second lumbar puncture, sustained disease activity was accompanied by considerable (more than 2 fold changes) increase expression of most of these inflammatory molecules while no significant changes in serum inflammatory markers were detected in the two consecutive serum samples. CONCLUSIONS: Elevated CSF protein expression of pro-inflammatory mediators, possibly specifically associated to GM demyelination, could remain stable or increase over time in patients with active multiple sclerosis. We underline the role of fluid analysis in understanding the pathophysiology of the disease and providing information on possible markers of disease activity and evolution

    CSF parvalbumin levels reflect interneuron loss linked with cortical pathology in multiple sclerosis

    Get PDF
    INTRODUCTION AND METHODS: In order to verify whether parvalbumin (PVALB), a protein specifically expressed by GABAergic interneurons, could be a MS-specific marker of grey matter neurodegeneration, we performed neuropathology/molecular analysis of PVALB expression in motor cortex of 40 post-mortem progressive MS cases, with/without meningeal inflammation, and 10 control cases, in combination with cerebrospinal fluid (CSF) assessment. Analysis of CSF PVALB and neurofilaments (Nf-L) levels combined with physical/cognitive/3TMRI assessment was performed in 110 naïve MS patients and in 32 controls at time of diagnosis. RESULTS: PVALB gene expression was downregulated in MS (fold change = 3.7 ± 1.2, P < 0.001 compared to controls) reflecting the significant reduction of PVALB+ cell density in cortical lesions, to a greater extent in MS patients with high meningeal inflammation (51.8, P < 0.001). Likewise, post-mortem CSF-PVALB levels were higher in MS compared to controls (fold change = 196 ± 36, P < 0.001) and correlated with decreased PVALB+ cell density (r = -0.64, P < 0.001) and increased MHC-II+ microglia density (r = 0.74, P < 0.01), as well as with early age of onset (r = -0.69, P < 0.05), shorter time to wheelchair (r = -0.49, P < 0.05) and early age of death (r = -0.65, P < 0.01). Increased CSF-PVALB levels were detected in MS patients at diagnosis compared to controls (P = 0.002). Significant correlation was found between CSF-PVALB levels and cortical lesion number on MRI (R = 0.28, P = 0.006) and global cortical thickness (R = -0.46, P < 0.001), better than Nf-L levels. CSF-PVALB levels increased in MS patients with severe cognitive impairment (mean ± SEM:25.2 ± 7.5 ng/mL) compared to both cognitively normal (10.9 ± 2.4, P = 0.049) and mild cognitive impaired (10.1 ± 2.9, P = 0.024) patients. CONCLUSIONS: CSF-PVALB levels reflect loss of cortical interneurons in MS patients with more severe disease course and might represent an early, new MS-specific biomarker of cortical neurodegeneration, atrophy, and cognitive decline

    HIV-1 Tat protein modulates the generation of cytotoxic T cell epitopes by modifying proteasome composition and enzymatic activity

    Get PDF
    Tat, the trans activation protein of HIV, is produced early upon infection to promote and expand HIV replication and transmission. However, Tat appears to also have effects on target cells, which may affect Ag recognition both during infection and after vaccination. In particular, Tat targets dendritic cells and induces their maturation and Ag-presenting functions, increasing Th1 T cell responses. We show in this work that Tat modifies the catalytic subunit composition of immunoproteasomes in B and T cells either expressing Tat or treated with exogenous biological active Tat protein. In particular, Tat up-regulates latent membrane protein 7 and multicatalytic endopeptidase complex like-1 subunits and down-modulates the latent membrane protein 2 subunit. These changes correlate with the increase of all three major proteolytic activities of the proteasome and result in a more efficient generation and presentation of subdominant MHC-I-binding CTL epitopes of heterologous Ags. Thus, Tat modifies the Ag processing and modulates the generation of CTL epitopes. This may have an impact on both the control of virally infected cells during HIV-1 infection and the use of Tat for vaccination strategies

    Management of Preschool Wheezing: Guideline from the Emilia-Romagna Asthma (ERA) Study Group

    Get PDF
    Preschool wheezing should be considered an umbrella term for distinctive diseases with different observable and measurable phenotypes. Despite many efforts, there is a large gap in knowledge regarding management of preschool wheezing. In order to fill this lack of knowledge, the aim of these guidelines was to define management of wheezing disorders in preschool children (aged up to 5 years). A multidisciplinary panel of experts of the Emilia-Romagna Region, Italy, addressed twelve different key questions regarding the management of preschool wheezing. Clinical questions have been formulated by the expert panel using the PICO format (Patients, Intervention, Comparison, Outcomes) and systematic reviews have been conducted on PubMed to answer these specific questions, with the aim of formulating recommendations. The GRADE approach has been used for each selected paper, to assess the quality of the evidence and the degree of recommendations. These guidelines represent, in our opinion, the most complete and up-to-date collection of recommendations on preschool wheezing to guide pediatricians in the management of their patients, standardizing approaches. Undoubtedly, more research is needed to find objective biomarkers and understand underlying mechanisms to assess phenotype and endotype and to personalize targeted treatment

    Peptide and Peptide-Like Modulators of 20S Proteasome Enzymatic Activity in Cancer Cells

    Get PDF
    The involvement of the ubiquitin–proteasome pathway in the degradation of critical intracellular regulatory proteins suggested a few years ago the potential use of proteasome inhibitors as novel therapeutic agents being applicable in many different disease indications, and in particular for cancer therapy. This article reviews recent salient medicinal chemistry achievements in the design, synthesis, and biological characterization of both synthetic and natural peptide-like proteasome inhibitors, updating recent reviews on this class of agents. As shown herein, different compound classes are capable of modulating the subunit-specific proteolytic activities of the 20S proteasome in ways not previously possible, and one of them, bortezomib, has provided proof-of-concept for this therapeutic approach in cancer clinical settings

    Rapid production of human liver scaffolds for functional tissue engineering by high shear stress oscillation-decellularization

    Get PDF
    The development of human liver scaffolds retaining their 3-dimensional structure and extra-cellular matrix (ECM) composition is essential for the advancement of liver tissue engineering. We report the design and validation of a new methodology for the rapid and accurate production of human acellular liver tissue cubes (ALTCs) using normal liver tissue unsuitable for transplantation. The application of high shear stress is a key methodological determinant accelerating the process of tissue decellularization while maintaining ECM protein composition, 3D-architecture and physico-chemical properties of the native tissue. ALTCs were engineered with human parenchymal and non-parenchymal liver cell lines (HepG2 and LX2 cells, respectively), human umbilical vein endothelial cells (HUVEC), as well as primary human hepatocytes and hepatic stellate cells. Both parenchymal and non-parenchymal liver cells grown in ALTCs exhibited markedly different gene expression when compared to standard 2D cell cultures. Remarkably, HUVEC cells naturally migrated in the ECM scaffold and spontaneously repopulated the lining of decellularized vessels. The metabolic function and protein synthesis of engineered liver scaffolds with human primary hepatocytes reseeded under dynamic conditions were maintained. These results provide a solid basis for the establishment of effective protocols aimed at recreating human liver tissue in vitro

    Deadly liaisons: fatal attraction between CCN matricellular proteins and the tumor necrosis factor family of cytokines

    Get PDF
    Recent studies have revealed an unexpected synergism between two seemingly unrelated protein families: CCN matricellular proteins and the tumor necrosis factor (TNF) family of cytokines. CCN proteins are dynamically expressed at sites of injury repair and inflammation, where TNF cytokines are also expressed. Although TNFα is an apoptotic inducer in some cancer cells, it activates NFκB to promote survival and proliferation in normal cells, and its cytotoxicity requires inhibition of de novo protein synthesis or NFκB signaling. The presence of CCN1, CCN2, or CCN3 overrides this requirement and unmasks the apoptotic potential of TNFα, thus converting TNFα from a proliferation-promoting protein into an apoptotic inducer. These CCN proteins also enhance the cytotoxicity of other TNF cytokines, including LTα, FasL, and TRAIL. Mechanistically, CCNs function through integrin α6β1 and the heparan sulfate proteoglycan (HSPG) syndecan-4 to induce reactive oxygen species (ROS) accumulation, which is essential for apoptotic synergism. Mutant CCN1 proteins defective for binding α6β1-HSPGs are unable to induce ROS or apoptotic synergism with TNF cytokines. Further, knockin mice that express an α6β1-HSPG-binding defective CCN1 are blunted in TNFα- and Fas-mediated apoptosis, indicating that CCN1 is a physiologic regulator of these processes. These findings implicate CCN proteins as contextual regulators of the inflammatory response by dictating or enhancing the cytotoxicity of TNFα and related cytokines

    Disease-Modifying Therapies and Coronavirus Disease 2019 Severity in Multiple Sclerosis

    Get PDF
    Objective: This study was undertaken to assess the impact of immunosuppressive and immunomodulatory therapies on the severity of coronavirus disease 2019 (COVID-19) in people with multiple sclerosis (PwMS). Methods: We retrospectively collected data of PwMS with suspected or confirmed COVID-19. All the patients had complete follow-up to death or recovery. Severe COVID-19 was defined by a 3-level variable: mild disease not requiring hospitalization versus pneumonia or hospitalization versus intensive care unit (ICU) admission or death. We evaluated baseline characteristics and MS therapies associated with severe COVID-19 by multivariate and propensity score (PS)-weighted ordinal logistic models. Sensitivity analyses were run to confirm the results. Results: Of 844 PwMS with suspected (n = 565) or confirmed (n = 279) COVID-19, 13 (1.54%) died; 11 of them were in a progressive MS phase, and 8 were without any therapy. Thirty-eight (4.5%) were admitted to an ICU; 99 (11.7%) had radiologically documented pneumonia; 96 (11.4%) were hospitalized. After adjusting for region, age, sex, progressive MS course, Expanded Disability Status Scale, disease duration, body mass index, comorbidities, and recent methylprednisolone use, therapy with an anti-CD20 agent (ocrelizumab or rituximab) was significantly associated (odds ratio [OR] = 2.37, 95% confidence interval [CI] = 1.18\u20134.74, p = 0.015) with increased risk of severe COVID-19. Recent use (&lt;1 month) of methylprednisolone was also associated with a worse outcome (OR = 5.24, 95% CI = 2.20\u201312.53, p = 0.001). Results were confirmed by the PS-weighted analysis and by all the sensitivity analyses. Interpretation: This study showed an acceptable level of safety of therapies with a broad array of mechanisms of action. However, some specific elements of risk emerged. These will need to be considered while the COVID-19 pandemic persists. ANN NEUROL 2021;89:780\u2013789
    • …
    corecore