818 research outputs found

    Lactobacillus Cell Surface Proteins Involved in Interaction with Mucus and Extracellular Matrix Components

    Get PDF
    The gut microbiota is a complex microbial ecosystem where bacteria, through mutual interactions, cooperate in maintaining of wellbeing and health. Lactobacilli are among the most important constituents of human and animal intestinal microbiota and include many probiotic strains. Their presence ensures protection from invasion of pathogens, as well as stimulation of the immune system and protection of the intestinal flora, often exerted through the ability to interact with mucus and extracellular matrix components. The main factors responsible for mediating adhesion of pathogens and commensals to the gut are cell surface proteins that recognize host targets, as mucus layer and extracellular matrix proteins. In the last years, several adhesins have been reported to be involved in lactobacilli–host interaction often miming the same mechanism used by pathogens

    The origin of the high-velocity cloud complex C

    Get PDF
    High-velocity clouds consist of cold gas that appears to be raining down from the halo to the disc of the Milky Way. Over the past fifty years, two competing scenarios have attributed their origin either to gas accretion from outside the Galaxy or to circulation of gas from the Galactic disc powered by supernova feedback (galactic fountain). Here we show that both mechanisms are simultaneously at work. We use a new galactic fountain model combined with high-resolution hydrodynamical simulations. We focus on the prototypical cloud complex C and show that it was produced by an explosion that occurred in the Cygnus-Outer spiral arm about 150 million years ago. The ejected material has triggered the condensation of a large portion of the circumgalactic medium and caused its subsequent accretion onto the disc. This fountain-driven cooling of the lower Galactic corona provides the low-metallicity gas required by chemical evolution models of the Milky Way's disc.Comment: 6 pages, 4 figures, 1 table; accepted by MNRA

    Structural investigation of nucleophosmin interaction with the tumor suppressor Fbw7γ

    Get PDF
    Nucleophosmin (NPM1) is a multifunctional nucleolar protein implicated in ribogenesis, centrosome duplication, cell cycle control, regulation of DNA repair and apoptotic response to stress stimuli. The majority of these functions are played through the interactions with a variety of protein partners. NPM1 is frequently overexpressed in solid tumors of different histological origin. Furthermore NPM1 is the most frequently mutated protein in acute myeloid leukemia (AML) patients. Mutations map to the C-terminal domain and lead to the aberrant and stable localization of the protein in the cytoplasm of leukemic blasts. Among NPM1 protein partners, a pivotal role is played by the tumor suppressor Fbw7γ, an E3-ubiquitin ligase that degrades oncoproteins like c-MYC, cyclin E, Notch and c-jun. In AML with NPM1 mutations, Fbw7γ is degraded following its abnormal cytosolic delocalization by mutated NPM1. This mechanism also applies to other tumor suppressors and it has been suggested that it may play a key role in leukemogenesis. Here we analyse the interaction between NPM1 and Fbw7γ, by identifying the protein surfaces implicated in recognition and key aminoacids involved. Based on the results of computational methods, we propose a structural model for the interaction, which is substantiated by experimental findings on several site-directed mutants. We also extend the analysis to two other NPM1 partners (HIV Tat and CENP-W) and conclude that NPM1 uses the same molecular surface as a platform for recognizing different protein partners. We suggest that this region of NPM1 may be targeted for cancer treatment

    Gastric melanoma of unknown primary

    Get PDF
    We describe a case of a patient with anemia referring to our Digestive Endoscopy Unit. Upper GI endoscopy revealed a polypoid lesion with an ulcerated central depression. Histopathological examination of the biopsy specimen taken during endoscopy revealed a gastric metastatic melanoma. The dermatologic inspection failed in finding the primary melanoma. The importance of endoscopic examination in the diagnostic process of metastatic patients with unknown primaries is highlited by this case

    Hepatosplenic T-Cell Lymphoma Mimicking Acute Onset of Cholestatic Hepatitis in a Young Immunocompetent Man: A Case Report

    Get PDF
    We herein report a case of hepatosplenic T-cell lymphoma (HSTCL) incidentally found in a 30-year-old man who came to the emergency department after an ankle trauma. At admission, laboratory tests revealed abnormal liver enzymes and pancytopenia, and imaging showed mild hepatosplenomegaly. During hospitalization, the patient's clinical condition worsened rapidly, with a concomitant increase in cholestatic enzymes, severe jaundice, and the worsening of pancytopenia. Causes of liver injury, including many infectious diseases, were explored until the diagnosis of HSTCL was made by liver and bone marrow biopsies. Subsequently, the patient underwent six cycles of chemotherapy with a CHOP (cyclophosphamide, hydroxydaunorubicin, oncovin and prednisone or prednisolone) regimen and one with Hyper-CVAD (fractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone) but, despite this aggressive treatment, died due to disease progression 2 months after diagnosis. This rare disease should be considered in the diagnostic workup of acute cholestatic hepatitis presenting with concomitant hepatosplenomegaly and cytopenia

    Glomerular and mitral-granule cell microcircuits coordinate temporal and spatial information processing in the olfactory bulb

    Get PDF
    The olfactory bulb processes inputs from olfactory receptor neurons (ORNs) through two levels: the glomerular layer at the site of input, and the granule cell level at the site of output to the olfactory cortex. The sequence of action of these two levels has not yet been examined. We analyze this issue using a novel computational framework that is scaled up, in three-dimensions (3D), with realistic representations of the interactions between layers, activated by simulated natural odors, and constrained by experimental and theoretical analyses. We suggest that the postulated functions of glomerular circuits have as their primary role transforming a complex and disorganized input into a contrast-enhanced and normalized representation, but cannot provide for synchronization of the distributed glomerular outputs. By contrast, at the granule cell layer, the dendrodendritic interactions mediate temporal decorrelation, which we show is dependent on the preceding contrast enhancement by the glomerular layer. The results provide the first insights into the successive operations in the olfactory bulb, and demonstrate the significance of the modular organization around glomeruli. This layered organization is especially important for natural odor inputs, because they activate many overlapping glomeruli

    The angular momentum of disc galaxies at z=1

    Get PDF
    We investigate the relation between stellar mass and specific stellar angular momentum, or `Fall relation', for a sample of 17 isolated, regularly rotating disc galaxies at z=1. All galaxies have a) rotation curves determined from Halpha emission-line data; b) HST imaging in optical and infrared filters; c) robust determinations of their stellar masses. We use HST images in f814w and f160w filters, roughly corresponding to rest-frames B and I bands, to extract surface brightness profiles for our systems. We robustly bracket the specific angular momentum by assuming that rotation curves beyond the outermost Halpha rotation point stay either flat or follow a Keplerian fall-off. By comparing our measurements with those determined for disc galaxies in the local Universe, we find no evolution in the Fall relation in the redshift range 0<z<1, regardless of the band used and despite the uncertainties in the stellar rotation curves at large radii. This result holds unless stellar masses at z=1 are systematically underestimated by more than 50%. Our findings are compatible with expectations based on a LCDM cosmological framework and support a scenario where both the stellar Tully-Fisher and mass-size relations for spirals do not evolve significantly in this redshift range.Comment: 11 pages, 4 figures, 1 table. Accepted by A&

    Blumgart Anastomosis After Pancreaticoduodenectomy. A Comprehensive Systematic Review, Meta-Analysis, and Meta-Regression

    Get PDF
    Background: The superiority of Blumgart anastomosis (BA) over non-BA duct to mucosa (non-BA DtoM) still remains under debate. Methods: We performed a systematic search of studies comparing BA to non-BA DtoM. The primary endpoint was CR-POPF. Postoperative morbidity and mortality, post-pancreatectomy hemorrhage (PPH), delayed gastric emptying (DGE), reoperation rate, and length of stay (LOS) were evaluated as secondary endpoints. The meta-analysis was carried out using random effect. The results were reported as odds ratio (OR), risk difference (RD), weighted mean difference (WMD), and number needed to treat (NNT). Results: Twelve papers involving 2368 patients: 1075 BA and 1193 non-BA DtoM were included. Regarding the primary endpoint, BA was superior to non-BA DtoM (RD = 0.10; 95% CI: −0.16 to −0.04; NNT = 9). The multivariate ORs' meta-analysis confirmed BA's protective role (OR 0.26; 95% CI: 0.09 to 0.79). BA was superior to DtoM regarding overall morbidity (RD = −0.10; 95% CI: −0.18 to −0.02; NNT = 25), PPH (RD = −0.03; 95% CI −0.06 to −0.01; NNT = 33), and LOS (− 4.2&nbsp;days; −7.1 to −1.2 95% CI). Conclusion: BA seems to be superior to non-BA DtoM in avoiding CR-POPF

    Characterization of the Mycobacterial MSMEG-3762/63 Efflux Pump in Mycobacterium smegmatis Drug Efflux

    Get PDF
    Multi-drug resistant tuberculosis (MDR-TB) represents a major health problem worldwide. Drug efflux and the activity of efflux transporters likely play important roles in the development of drug-tolerant and drug-resistant mycobacterial phenotypes. This study is focused on the action of a mycobacterial efflux pump as a mechanism of drug resistance. Previous studies demonstrated up-regulation of the TetR-like transcriptional regulator MSMEG_3765 in Mycobacterium smegmatis and its ortholog Rv1685c in Mycobacterium tuberculosis (Mtb) in acid-nitrosative stress conditions. MSMEG-3765 regulates the expression of the MSMEG_3762/63/65 operon, and of the orthologous region in Mtb (Rv1687c/86c/85c). MSMEG-3762 and Rv1687c are annotated as ATP-binding proteins, while MSMEG-3763 and Rv1686c are annotated as trans-membrane polypeptides, defining an ABC efflux pump in both M. smegmatis and Mtb. The two putative efflux systems share a high percentage of identity. To examine the role of the putative efflux system MSMEG-3762/63, we constructed and characterized a MSMEG-3763 deletion mutant in M. smegmatis (∆MSMEG_3763). By comparative analysis of wild type, knockout, and complemented strains, together with structural modeling and molecular docking bioinformatics analyses of the MSMEG-3763 trans-membrane protein, we define the protein complex MSMEG-3762/63 as an efflux pump. Moreover, we demonstrate involvement of this pump in biofilm development and in the extrusion of rifampicin and ciprofloxacin (CIP), antimicrobial drugs used in first- and second-line anti-TB therapies

    Surface displaced alfa-enolase of Lactobacillus plantarum is a fibronectin binding protein.

    Get PDF
    BACKGROUND: Lactic acid bacteria of the genus Lactobacillus and Bifidobacterium are one of the most important health promoting groups of the human intestinal microbiota. Their protective role within the gut consists in out competing invading pathogens for ecological niches and metabolic substrates. Among the features necessary to provide health benefits, commensal microorganisms must have the ability to adhere to human intestinal cells and consequently to colonize the gut. Studies on mechanisms mediating adhesion of lactobacilli to human intestinal cells showed that factors involved in the interaction vary mostly among different species and strains, mainly regarding interaction between bacterial adhesins and extracellular matrix or mucus proteins. We have investigated the adhesive properties of Lactobacillus plantarum, a member of the human microbiota of healthy individuals. RESULTS: We show the identification of a Lactobacillus plantarum LM3 cell surface protein (48 kDa), which specifically binds to human fibronectin (Fn), an extracellular matrix protein. By means of mass spectrometric analysis this protein was identified as the product of the L. plantarum enoA1 gene, coding the EnoA1 alfa-enolase. Surface localization of EnoA1 was proved by immune electron microscopy. In the mutant strain LM3-CC1, carrying the enoA1 null mutation, the 48 kDa adhesin was not anymore detectable neither by anti-enolase Western blot nor by Fn-overlay immunoblotting assay. Moreover, by an adhesion assay we show that LM3-CC1 cells bind to fibronectin-coated surfaces less efficiently than wild type cells, thus demonstrating the significance of the surface displaced EnoA1 protein for the L. plantarum LM3 adhesion to fibronectin. CONCLUSION: Adhesion to host tissues represents a crucial early step in the colonization process of either pathogens or commensal bacteria. We demonstrated the involvement of the L. plantarum Eno A1 alfa-enolase in Fn-binding, by studying LM3 and LM3-CC1 surface proteins. Isolation of LM3-CC1 strain was possible for the presence of expressed enoA2 gene in the L. plantarum genome, giving the possibility, for the first time to our knowledge, to quantitatively compare adhesion of wild type and mutant strain, and to assess doubtless the role of L. plantarum Eno A1 as a fibronectin binding protein
    • …
    corecore