24 research outputs found

    Liraglutide Reduces Carotid Intima-Media Thickness by Reducing Small Dense Low-Density Lipoproteins in a Real-World Setting of Patients with Type 2 Diabetes: A Novel Anti-Atherogenic Effect

    Get PDF
    Introduction: Liraglutide has several non-glycemic effects, including those on plasma lipids and lipoproteins, contributing to its cardiovascular benefit; however, the exact underlying mechanisms remain unclear. We investigated a novel anti-atherogenic effect of liraglutide in a real-world prospective study on patients with type 2 diabetes (T2DM). Methods: Sixty-two patients with T2DM (31 men, 31 women; mean age ± standard deviation 61 ± 9 years) naïve to incretin-based therapies were treated with liraglutide (1.2 mg/day) as add-on therapy to metformin (1500–3000 mg/day) for 4 months. Laboratory analyses included the assessment of lipoprotein subclass profile by gel electrophoresis (Lipoprint; Quantimetrix Corp., Redondo Beach, CA, USA). Carotid intima-media thickness (cIMT) was assessed by Doppler ultrasonography. Statistical analyses included the paired t test, Spearman correlation and multiple regression analysis. Results: The addition of liraglutide to metformin monotherapy resulted in significant reductions in fasting glycemia, hemoglobin A1c, body mass index, waist circumference, total cholesterol, triglycerides and low-density lipoprotein (LDL)-cholesterol, as well as in cIMT. There was an increase in the large LDL-1 subfraction, with a concomitant reduction in atherogenic small dense LDL-3 and LDL-4 subfractions. Correlation analysis revealed a significant association between changes in cIMT and changes in small dense LDL-3 subfraction (r = 0.501; p < 0.0001). Multivariate analysis, including all of the measured anthropometric and laboratory parameters, revealed that only changes in the small dense LDL-3 subfraction were independent predictors of changes in cIMT (p < 0.0001). Conclusion: Our findings are the first to show that the vascular benefit of liraglutide in patients with T2DM is associated with reductions in atherogenic small dense LDL. This effect is independent of glycemic control and body weight reduction and may represent one of the key mechanisms by which liraglutide is able to reduce cardiovascular events. Trial Registration: ClinicalTrials.gov: NCT01715428

    Isolation of single circulating trophoblasts from maternal circulation for noninvasive fetal copy number variant profiling

    Get PDF
    ObjectiveTo develop a multi-step workflow for the isolation of circulating extravillous trophoblasts (cEVTs) by describing the key steps enabling a semi-automated process, including a proprietary algorithm for fetal cell origin genetic confirmation and copy number variant (CNV) detection. MethodsDetermination of the limit of detection (LoD) for submicroscopic CNV was performed by serial experiments with genomic DNA and single cells from Coriell cell line biobank with known imbalances of different sizes. A pregnancy population of 372 women was prospectively enrolled and blindly analyzed to evaluate the current workflow. ResultsAn LoD of 800 Kb was demonstrated with Coriell cell lines. This level of resolution was confirmed in the clinical cohort with the identification of a pathogenic CNV of 800 Kb, also detected by chromosomal microarray. The mean number of recovered cEVTs was 3.5 cells per sample with a significant reverse linear trend between gestational age and cEVT recovery rate and number of recovered cEVTs. In twin pregnanices, evaluation of zygosity, fetal sex and copy number profiling was performed in each individual cell. ConclusionOur semi-automated methodology for the isolation and single-cell analysis of cEVTS supports the feasibility of a cell-based noninvasive prenatal test for fetal genomic profiling. © 2022 A. Menarini Biomarkers Singapore Pte Ltd. Prenatal Diagnosis published by John Wiley & Sons Ltd

    How do cardiologists select patients for dual antiplatelet therapy continuation beyond 1 year after a myocardial infarction? Insights from the EYESHOT Post-MI Study

    Get PDF
    Background: Current guidelines suggest to consider dual antiplatelet therapy (DAPT) continuation for longer than 12 months in selected patients with myocardial infarction (MI). Hypothesis: We sought to assess the criteria used by cardiologists in daily practice to select patients with a history of MI eligible for DAPT continuation beyond 1 year. Methods: We analyzed data from the EYESHOT Post-MI, a prospective, observational, nationwide study aimed to evaluate the management of patients presenting to cardiologists 1 to 3 years from the last MI event. Results: Out of the 1633 post-MI patients enrolled in the study between March and December 2017, 557 (34.1%) were on DAPT at the time of enrolment, and 450 (27.6%) were prescribed DAPT after cardiologist assessment. At multivariate analyses, a percutaneous coronary intervention (PCI) with multiple stents and the presence of peripheral artery disease (PAD) resulted as independent predictors of DAPT continuation, while atrial fibrillation was the only independent predictor of DAPT interruption for patients both at the second and the third year from MI at enrolment and the time of discharge/end of the visit. Conclusions: Risk scores recommended by current guidelines for guiding decisions on DAPT duration are underused and misused in clinical practice. A PCI with multiple stents and a history of PAD resulted as the clinical variables more frequently associated with DAPT continuation beyond 1 year from the index MI

    Discordant phenotype in monozygotic twins with renal coloboma syndrome and a PAX2 mutation

    No full text
    Background: Renal coloboma syndrome (RCS) is a highly variable syndrome characterized by renal and ocular abnormalities. It is associated in about 50 % of cases with mutations of PAX2, a gene encoding a transcription factor required during development. Case-Diagnosis/Treatment: The case study involves two monozygotic twin sisters with RCS showing highly discordant phenotypes. Twin 1 was antenatally diagnosed with multiple cysts in the right kidney. She had complicated vacuum-assisted delivery with acute renal failure. She developed proteinuria at age 4 years, followed by a progressive rise in serum creatinine requiring renal replacement therapy at age 22. No ocular abnormalities have been detected. Twin 2 experienced rapidly reversible acute renal failure without renal morphological abnormalities at birth. At age 2 years, complete visual acuity loss of the left eye secondary to an optic disc coloboma was diagnosed. No significant events occurred until the age of 20, when clinical proteinuria was detected. Proteinuria remission was obtained by multidrug treatment. In both patients, a novel de novo mutation of PAX2 was detected, which leads to the substitution of a highly conserved cysteine (p.C52Y). Conclusions: The patients described provide an extreme example of clinical variability in RCS. The role of environmental, genetic, and epigenetic factors is discussed

    Androgen receptor serine 81 mediates Pin1 interaction and activity.

    No full text
    Hormone-dependent tumors are characterized by deregulated activity of specific steroid receptors, allowing aberrant expression of many genes involved in cancer initiation, progression and metastasis. In prostate cancer, the androgen receptor (AR) protein has pivotal functions, and over the years it has been the target of different drugs. AR is a nuclear receptor whose activity is regulated by a phosphorylation mechanism controlled by hormone and growth factors. Following phosphorylation, AR interacts with many cofactors that closely control its function. Among such cofactors, Pin1 is a peptidyl-prolyl isomerase that is involved in the control of protein phosphorylation and has a prognostic value in prostate cancer. In the present study, we demonstrate that ARSer81 is involved in the interaction with Pin1, and that this interaction is important for the transcriptional activity of AR. Since Pin1 expression positively correlates with tumor grade, our results suggest that Pin1 can participate in this process by modulating AR function

    Localization of mesenchymal stromal cells dictates their immune or proinflammatory effects in kidney transplantation

    No full text
    Multipotent mesenchymal stromal cells (MSC) have recently emerged as promising candidates for cell-based immunotherapy in solid-organ transplantation. However, optimal conditions and settings for fully harnessing MSC tolerogenic properties need to be defined. We recently reported that autologous MSC given posttransplant in kidney transplant patients was associated with transient renal insufficiency associated with intragraft recruitment of neutrophils and complement C3 deposition. Here, we moved back to a murine kidney transplant model with the aim to define the best timing of MSC infusion capable of promoting immune tolerance without negative effects on early graft function. We also investigated the mechanisms of the immunomodulatory and/or proinflammatory activities of MSC according to whether cells were given before or after transplant. Posttransplant MSC infusion in mice caused premature graft dysfunction and failed to prolong graft survival. In this setting, infused MSC localized mainly into the graft and associated with neutrophils and complement C3 deposition. By contrast, pretransplant MSC infusion induced a significant prolongation of kidney graft survival by a Treg-dependent mechanism. MSC-infused pretransplant localized into lymphoid organs where they promoted early expansion of Tregs. Thus, pretransplant MSC infusion may be a useful approach to fully exploit their immunomodulatory properties in kidney transplantation. In a murine kidney transplant model, posttransplant MSC infusion causes premature graft dysfunction and fails to prolong graft survival, while pretransplant MSC infusion induces a significant prolongation of kidney graft survival by a regulatory T cell-dependent mechanism
    corecore