8 research outputs found

    Factors controlling the community structure of picoplankton in contrasting marine environments

    Get PDF
    The effect of inorganic nutrients on planktonic assemblages has traditionally relied on concentrations rather than estimates of nutrient supply. We combined a novel dataset of hydrographic properties, turbulent mixing, nutrient concentration, and picoplankton community composition with the aims of (i) quantifying the role of temperature, light, and nitrate fluxes as factors controlling the distribution of autotrophic and heterotrophic picoplankton subgroups, as determined by flow cytometry, and (ii) describing the ecological niches of the various components of the picoplankton community. Data were collected at 97 stations in the Atlantic Ocean, including tropical and subtropical open-ocean waters, the northwestern Mediterranean Sea, and the Galician coastal upwelling system of the northwest Iberian Peninsula. A generalized additive model (GAM) approach was used to predict depth-integrated biomass of each picoplankton subgroup based on three niche predictors: sea surface temperature, averaged daily surface irradiance, and the transport of nitrate into the euphotic zone, through both diffusion and advection. In addition, niche overlap among different picoplankton subgroups was computed using nonparametric kernel density functions. Temperature and nitrate supply were more relevant than light in predicting the biomass of most picoplankton subgroups, except for Prochlorococcus and low-nucleic-acid (LNA) prokaryotes, for which irradiance also played a significant role. Nitrate supply was the only factor that allowed the distinction among the ecological niches of all autotrophic and heterotrophic picoplankton subgroups. Prochlorococcus and LNA prokaryotes were more abundant in warmer waters ( \u3e 20°C) where the nitrate fluxes were low, whereas Synechococcus and high-nucleic-acid (HNA) prokaryotes prevailed mainly in cooler environments characterized by intermediate or high levels of nitrate supply. Finally, the niche of picoeukaryotes was defined by low temperatures and high nitrate supply. These results support the key role of nitrate supply, as it not only promotes the growth of large phytoplankton, but it also controls the structure of marine picoplankton communities

    Volume 35, AMT-1 Cruise Report and Preliminary Results

    Get PDF
    This report documents the scientific activities on board the Royal Research Ship (RRS) 'James Clark Ross' during the irst Atlantic Meridional Transect (AMT-1), 21 September to 24 October 1995. The ship sailed from Grimsby (England) for Montevideo (Uruguay) and then continued on to Stanley (Falkland Islands). The primary objective of the AMT program is to investigate basic biological processes in the open Atlantic Ocean over very broad spatial scales. For AMT-1, the meridional range covered was approximately 50 deg N to 50 deg S or nearly 8,000 nmi. The measurements to be taken during the AMT cruises are fundamental for the calibration, validation, and continuing understanding of remotely sensed observations of biological oceanography. They are also important for understanding plankton community structure over latitudinal scales and the role of the world ocean in global carbon cycles. During AMT-1 a variety of instruments were used to map the physical, chemical, and biological structure of the upper 200 m of the water column. Ocean color measurements were made using state-of-the-art sensors, whose calibration was traceable to the highest international standards. New advances in fluorometry were used to measure photosynthetic activity, which was then used to further interpret primary productivity. A unique set of samples and data were collected for the planktonic assemblages that vary throughout the range of the transect. These data will yield new interpretations on community composition and their role in carbon cycling. While the various provinces of the Atlantic Ocean were being crossed, the partial pressure of CO2 was related to biological productivity. This comparison revealed the areas of drawdown of atmospheric CO2 and how these areas relate to the surrounding biological productivity. These data, plus the measurements of light attenuation and phytoplankton optical properties, will be used as a primary input for basin-scale biological productivity models to help develop ecosystem dynamics models which will be important for improving the forecasting abilities of modelers. The AMT program is also attempting to meet the needs of international agencies in their implementation of Sensor Intercomparison and Merger for Biological and Interdisciplinary Ocean Studies (SIMBIOS), a program to develop a methodology and operational capability to combine data products from the various ocean color satellite missions

    Deep maxima of phytoplankton biomass, primary production and bacterial production in the Mediterranean Sea

    Get PDF
    The deep chlorophyll maximum (DCM) is a ubiquitous feature of phytoplankton vertical distribution in stratified waters that is relevant to our understanding of the mechanisms that underpin the variability in photoautotroph ecophysiology across environmental gradients and has implications for remote sensing of aquatic productivity. During the PEACETIME (Process studies at the air-sea interface after dust deposition in the Mediterranean Sea) cruise, carried out from 10 May to 11 June 2017, we obtained 23 concurrent vertical profiles of phytoplankton chlorophyll a, carbon biomass and primary production, as well as heterotrophic prokaryotic production, in the western and central Mediterranean basins. Our main aims were to quantify the relative role of photoacclimation and enhanced growth as underlying mechanisms of the DCM and to assess the trophic coupling between phytoplankton and heterotrophic prokaryotic production. We found that the DCM coincided with a maximum in both the biomass and primary production but not in the growth rate of phytoplankton, which averaged 0.3 d−1 and was relatively constant across the euphotic layer. Photoacclimation explained most of the increased chlorophyll a at the DCM, as the ratio of carbon to chlorophyll a (C : Chl a) decreased from ca. 90–100 (g : g) at the surface to 20–30 at the base of the euphotic layer, while phytoplankton carbon biomass increased from ca. 6 mgCm−3 at the surface to 10–15 mgCm−3 at the DCM. As a result of photoacclimation, there was an uncoupling between chlorophyll a-specific and carbon-specific productivity across the euphotic layer. The ratio of fucoxanthin to total chlorophyll a increased markedly with depth, suggesting an increased contribution of diatoms at the DCM. The increased biomass and carbon fixation at the base of the euphotic zone was associated with enhanced rates of heterotrophic prokaryotic activity, which also showed a surface peak linked with warmer temperatures. Considering the phytoplankton biomass and turnover rates measured at the DCM, nutrient diffusive fluxes across the nutricline were able to supply only a minor fraction of the photoautotroph nitrogen and phosphorus requirements. Thus the deep maxima in biomass and primary production were not fuelled by new nutrients but likely resulted from cell sinking from the upper layers in combination with the high photosynthetic efficiency of a diatom-rich, low-light acclimated community largely sustained by regenerated nutrients. Further studies with increased temporal and spatial resolution will be required to ascertain if the peaks of deep primary production associated with the DCM persist across the western and central Mediterranean Sea throughout the stratification season

    Modeling Oceanic Primary Production: Photoacclimation and Nutrient Effects on Light-saturated Photosynthesis

    No full text
    In this report, we describe a new model (the 'PhotoAcc' model) for estimating changes in the light-saturated rate of chlorophyll-normalized phytoplankton carbon fixation (Pbmax). The model is based on measurements conducted during the Atlantic Meridional Transect studies and the Bermuda Time Series program. The PhotoAcc model explained 64% to 82% of the observed variability in Pbmax for our data set, whereas none of the previously published Pbmax models described over the past 44 years explained any of the variance. The significance of this result is that a primary limiting factor for extracting ocean carbon fixation rates from satellite measurements of near surface chlorophyll has been errors in the estimate of Pbmax. Our new model should thus result in much improved calculations of oceanic photosynthesis and thus the role of the oceans in the global carbon cycle

    Impact of dust addition on Mediterranean plankton communities under present and future conditions of pH and temperature: an experimental overview

    No full text
    Although atmospheric dust fluxes from arid as well as human-impacted areas represent a significant source of nutrients to surface waters of the Mediterranean Sea, studies focusing on the evolution of the metabolic balance of the plankton community following a dust deposition event are scarce and none were conducted in the context of projected future levels of temperature and pH. Moreover, most of the experiments took place in coastal areas. In the framework of the PEACETIME project, three dust-addition perturbation experiments were conducted in 300-L tanks filled with surface seawater collected in the Tyrrhenian Sea (TYR), Ionian Sea (ION) and in the Algerian basin (FAST) onboard the R/V “Pourquoi Pas?” in late spring 2017. For each experiment, six tanks were used to follow the evolution of chemical and biological stocks, biological activity and particle export. The impacts of a dust deposition event simulated at their surface were followed under present environmental conditions and under a realistic climate change scenario for 2100 (ca. +3 °C and −0.3 pH units). The tested waters were all typical of stratified oligotrophic conditions encountered in the open Mediterranean Sea at this period of the year, with low rates of primary production and a metabolic balance towards net heterotrophy. The release of nutrients after dust seeding had very contrasting impacts on the metabolism of the communities, depending on the station investigated. At TYR, the release of new nutrients was followed by a negative impact on both particulate and dissolved 14C-based production rates, while heterotrophic bacterial production strongly increased, driving the community to an even more heterotrophic state. At ION and FAST, the efficiency of organic matter export due to mineral/organic aggregation processes was lower than at TYR likely related to a lower quantity/age of dissolved organic matter present at the time of the seeding. At these stations, both the autotrophic and heterotrophic community benefited from dust addition, with a stronger relative increase in autotrophic processes observed at FAST. Our study showed that the potential positive impact of dust deposition on primary production depends on the initial composition and metabolic state of the investigated community. This potential is constrained by the quantity of nutrients added in order to sustain both the fast response of heterotrophic prokaryotes and the delayed one of primary producers. Finally, under future environmental conditions, heterotrophic metabolism was overall more impacted than primary production, with the consequence that all integrated net community production rates decreased with no detectable impact on carbon export, therefore reducing the capacity of surface waters to sequester anthropogenic CO2
    corecore