129 research outputs found

    Strategies for Healthcare Payer Information Technology Integration After Mergers and Acquisitions

    Get PDF
    Despite the high rate of failure in merger and acquisition (M&A) transactions, many organizations continue to rely on M&As as their primary growth strategy and to address market competition. The purpose of this qualitative single case study was to explore strategies managers from a large healthcare payer in the midwestern United States used to achieve operational and strategic synergies during the postacquisition information technology (IT) integration phase. Haspeslagh and Jemison\u27s acquisition integration approaches model was the conceptual framework for the study. Methodological triangulation was established by analyzing the data from the semistructured interviews of 6 senior executives and 6 IT strategists, discussion points produced in a focus group involving 4 acquisition integration leaders, and information gleaned from M&A periodicals. Data were analyzed using Saldaña\u27s thematic analysis method and showed that the healthcare payer organization managers used the following 4 strategies to achieve the planned synergies: plan for expected business synergies from the postacquisition IT integration, make cultural harmonization a key element of change management, align and continuously evaluate the progress of postacquisition IT integration strategies against planned synergies, and preserve durability of acquired capabilities by granting autonomy to the acquired organization. The findings of this study could lead to positive social change by stimulating a business environment that might allow healthcare payers to expand their strategic capabilities and serve their local communities with new products and other choices that improve the quality of care, health outcomes, well-being, and longevity of the consumer

    Strain distribution in quantum dot of arbitrary polyhedral shape: Analytical solution in closed form

    Full text link
    An analytical expression of the strain distribution due to lattice mismatch is obtained in an infinite isotropic elastic medium (a matrix) with a three-dimensional polyhedron-shaped inclusion (a quantum dot). The expression was obtained utilizing the analogy between electrostatic and elastic theory problems. The main idea lies in similarity of behavior of point charge electric field and the strain field induced by point inclusion in the matrix. This opens a way to simplify the structure of the expression for the strain tensor. In the solution, the strain distribution consists of contributions related to faces and edges of the inclusion. A contribution of each face is proportional to the solid angle at which the face is seen from the point where the strain is calculated. A contribution of an edge is proportional to the electrostatic potential which would be induced by this edge if it is charged with a constant linear charge density. The solution is valid for the case of inclusion having the same elastic constants as the matrix. Our method can be applied also to the case of semi-infinite matrix with a free surface. Three particular cases of the general solution are considered--for inclusions of pyramidal, truncated pyramidal, and "hut-cluster" shape. In these cases considerable simplification was achieved in comparison with previously published solutions. A generalization of the obtained solution to the case of anisotropic media is discussed.Comment: revtex4, 12 pages, 6 figures; Ch. II rewritten, new Ch. V added, errors in Eq.(13) and Eq.(22) fixe

    Understanding the origins of the intrinsic dead-layer effect in nanocapacitors

    Full text link
    Thin films of high-permittivity dielectrics are considered ideal candidates for realizing high charge density nanosized capacitors for use in next generation energy storage and nanoelectronic applications. The experimentally observed capacitance of such film nanocapacitors is, however, an order of magnitude lower than expected. This dramatic drop in capacitance is attributed to the so called dead layer - a low-permittivity layer at the metal-dielectric interface in series with the high-permittivity dielectric. The exact nature of the dead layer and the reasons for its origin still remain somewhat unclear. Based on insights gained from recently published ab initio work on SrRuO3/SrTiO3/SrRuO3 and our first principle simulations on Au/MgO/Au and Pt/MgO/Pt nanocapacitors, we construct an analytical model that isolates the contributions of various physical mechanisms to the intrinsic dead layer. In particular we argue that strain-gradients automatically arise in very thin films even in absence of external strain inducers and, due to flexoelectric coupling, are dominant contributors to the dead layer effect. Our theoretical results compare well with existing as well as our own ab initio calculations and suggest that inclusion of flexoelectricity is necessary for qualitative reconciliation of atomistic results. Our results also hint at some novel remedies for mitigating the dead layer effect.Comment: 17 pages, 6 figure

    Chirality in isotropic linear gradient elasticity

    Get PDF
    AbstractChirality is, generally speaking, the property of an object that can be classified as left- or right-handed. Though it plays an important role in many branches of science, chirality is encountered less often in continuum mechanics, so most classical material models do not account for it. In the context of elasticity, for example, classical elasticity is not chiral, leading different authors to use Cosserat elasticity to allow modelling of chiral behaviour.Gradient elasticity can also model chiral behaviour, however this has received much less attention than its Cosserat counterpart. This paper shows how in the case of isotropic linear gradient elasticity a single additional parameter can be introduced that describes chiral behaviour. This additional parameter, directly linked to three-dimensional deformation, can be either negative or positive, with its sign indicating a discrimination between the two opposite directions of torsion. Two simple examples are presented to show the practical effects of the chiral behaviour

    On a family of numerical models for couple stress based flexoelectricity for continua and beams

    Get PDF
    A family of numerical models for the phenomenological linear flexoelectric theory for continua and their particularisation to the case of three-dimensional beams based on a skew-symmetric couple stress theory is presented. In contrast to the standard strain gradient flexoelectric models which assume coupling between electric polarisation and strain gradients, we postulate an electric enthalpy in terms of linear invariants of curvature and electric field. This is achieved by introducing the axial (mean) curvature vector as a strain gradient measure. The physical implication of this assumption is many-fold. Firstly, analogous to the standard strain gradient models, for isotropic (non-piezoelectric) materials it allows constructing flexoelectric energies without breaking material’s centrosymmetry. Secondly, unlike the standard strain gradient models, nonuniform distribution of volumetric part of strains (volumetric strain gradients) do not generate electric polarisation, as also confirmed by experimental evidence to be the case for some important classes of flexoelectric materials. Thirdly, a state of plane strain generates out of plane deformation through strain gradient effects. Finally, under this theory, extension and shear coupling modes cannot be characterised individually as they contribute to the generation of electric polarisation as a whole. As a first step, a detailed comparison of the developed couple stress based flexoelectric model with the standard strain gradient flexoelectric models is performed for the case of Barium Titanate where a myriad of simple analytical solutions are assumed in order to quantitatively describe the similarities and dissimilarities in effective electromechanical coupling under these two theories. From a physical point of view, the most notable insight gained is that, if the same experimental flexoelectric constants are fitted in to both theories, the presented theory in general, reports up to 200% stronger electromechanical conversion efficiency. From the formulation point of a view, the presented flexoelectric model is also competitively simpler as it eliminates the need for high order strain gradient and coupling tensors and can be characterised by a single flexoelectric coefficient. In addition, three distinct mixed flexoelectric variational principles are presented for both continuum and beam models that facilitate incorporation of strain gradient measures in to a standard finite element scheme while maintaining the C0 continuity. Consequently, a series of low and high order mixed finite element schemes for couple stress based flexoelectricity are presented and thoroughly benchmarked against available closed form solutions in regards to electromechanical coupling efficiency. Finally, nanocompression of a complex flexoelectric conical pyramid for which analytical solution cannot be established is numerically studied where curvature induced necking of the specimen and vorticity around the frustum generate moderate electric polarisation

    Analysis of the tilted flat punch in couple-stress elasticity

    Get PDF
    This paper was accepted for publication in the journal International Journal of Solids and Structures and the definitive published version is available at https://doi.org/10.1016/j.ijsolstr.2016.01.017.In the present paper we explore the response of a half-plane indented by a tilted flat punch with sharp corners in the context of couple-stress elasticity theory. Contact conditions arise in a number of modern engineering applications ranging from structural and geotechnical engineering to micro and nanotechnology. As the contact scales reduce progressively the effects of the microstructure upon the macroscopic material response cannot be ignored. The generalized continuum theory of couple-stress elasticity introduces characteristic material lengths in order to describe the pertinent scale effects that emerge from the underlying material microstructure. The problem under investigation is interesting for three reasons: Firstly, the indentor's geometry is simple so that benchmark results may be extracted. Secondly, important deterioration of the macroscopic results may emerge in the case that a tilting moment is applied on the indentor inadvertently or in the case that the flat punch itself is not self-aligning so that asymmetrical contact pressure distributions arise on the contact faces. Thirdly, the voluntary application of a tilting moment on the flat punch during an experiment gives rise to potential capabilities of the flat punch for the determination of the material microstructural characteristic lengths. The solution methodology is based on singular integral equations which have resulted from a treatment of the mixed boundary value problem via integral transforms and generalized functions. The results show significant departure from the predictions of classical elasticity revealing that valuable information may be deducted from the indentation of a tilted punch of a microstructured solid
    corecore