55 research outputs found

    Polydatin beneficial effects in zebrafish larvae undergoing multiple stress types

    Get PDF
    none8noPolydatin is a polyphenol, whose beneficial properties, including anti-inflammatory and antioxidant activity, have been largely demonstrated. At the same time, copper has an important role in the correct organism homeostasis and alteration of its concentration can induce oxidative stress. In this study, the efficacy of polydatin to counteract the stress induced by CuSO4 exposure or by caudal fin amputation was investigated in zebrafish larvae. The study revealed that polydatin can reduced the stress induced by a 2 h exposure to 10 µM CuSO4 by lowering the levels of il1b and cxcl8b.1 and reducing neutrophils migration in the head and along the lateral line. Similarly, polydatin administration reduced the number of neutrophils in the area of fin cut. In addition, polydatin upregulates the expression of sod1 mRNA and CAT activity, both involved in the antioxidant response. Most of the results obtained in this study support the working hypothesis that polydatin administration can modulate stress response and its action is more effective in mitigating the effects rather than in preventing chemical damages.openPessina A.; Di Vincenzo M.; Maradonna F.; Marchegiani F.; Olivieri F.; Randazzo B.; Gioacchini G.; Carnevali O.Pessina, A.; Di Vincenzo, M.; Maradonna, F.; Marchegiani, F.; Olivieri, F.; Randazzo, B.; Gioacchini, G.; Carnevali, O

    Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism.

    Get PDF
    The microbiome plays an important role in lipid metabolism but how the introduction of probiotic communities affects host lipid metabolism is poorly understood. Using a multidisciplinary approach we addressed this knowledge gap using the zebrafish model by coupling high-throughput sequencing with biochemical, molecular and morphological analysis to evaluate the changes in the intestine. Analysis of bacterial 16S libraries revealed that Lactobacillus rhamnosus was able to modulate the gut microbiome of zebrafish larvae, elevating the abundance of Firmicutes sequences and reducing the abundance of Actinobacteria. The gut microbiome changes modulated host lipid processing by inducing transcriptional down-regulation of genes involved in cholesterol and triglycerides metabolism (fit2, agpat4, dgat2, mgll, hnf4α, scap, and cck) concomitantly decreasing total body cholesterol and triglyceride content and increasing fatty acid levels. L. rhamnosus treatment also increased microvilli and enterocyte lengths and decreased lipid droplet size in the intestinal epithelium. These changes resulted in elevated zebrafish larval growth. This integrated system investigation demonstrates probiotic modulation of the gut microbiome, highlights a novel gene network involved in lipid metabolism, provides an insight into how the microbiome regulates molecules involved in lipid metabolism, and reveals a new potential role for L. rhamnosus in the treatment of lipid disorders

    Molecular responses of European flounder (Platichthys flesus) chronically exposed to contaminated estuarine sediments

    Get PDF
    Molecular responses to acute toxicant exposure can be effective biomarkers, however responses to chronic exposure are less well characterised. The aim of this study was to determine chronic molecular responses to environmental mixtures in a controlled laboratory setting, free from the additional variability encountered with environmental sampling of wild organisms. Flounder fish were exposed in mesocosms for seven months to a contaminated estuarine sediment made by mixing material from the Forth (high organics) and Tyne (high metals and tributyltin) estuaries (FT) or a reference sediment from the Ythan estuary (Y). Chemical analyses demonstrated that FT sediment contained significantly higher concentrations of key environmental pollutants (including polycyclic aromatic hydrocarbons (PAHs), chlorinated biphenyls and heavy metals) than Y sediment, but that chronically exposed flounder showed a lack of differential accumulation of contaminants, including heavy metals. Biliary 1-hydroxypyrene concentration and erythrocyte DNA damage increased in FT-exposed fish. Transcriptomic and 1H NMR metabolomic analyses of liver tissues detected small but statistically significant alterations between fish exposed to different sediments. These highlighted perturbance of immune response and apoptotic pathways, but there was a lack of response from traditional biomarker genes. Gene-chemical association annotation enrichment analyses suggested that polycyclic aromatic hydrocarbons were a major class of toxicants affecting the molecular responses of the exposed fish. This demonstrated that molecular responses of sentinel organisms can be detected after chronic mixed toxicant exposure and that these can be informative of key components of the mixture

    Interactions Between Estrogen- and Ah-Receptor Signalling Pathways in Primary Culture of Salmon Hepatocytes Exposed to Nonylphenol and 3,3',4,4'-Tetrachlorobiphenyl (Congener 77)

    Get PDF
    BACKGROUND: The estrogenic and xenobiotic biotransformation gene expressions are receptor-mediated processes that are ligand structure-dependent interactions with estrogen-receptor (ER) and aryl hydrocarbon receptor (AhR), probably involving all subtypes and other co-factors. The anti-estrogenic activities of AhR agonists have been reported. In teleost fish, exposure to AhR agonists has been associated with reduced Vtg synthesis or impaired gonadal development in both in vivo- and in vitro studies. Inhibitory AhR and ER cross-talk have also been demonstrated in breast cancer cells, rodent uterus and mammary tumors. Previous studies have shown that AhR-agonists potentiate xenoestrogen-induced responses in fish in vivo system. Recently, several studies have shown that AhR-agonists directly activate ERα and induce estrogenic responses in mammalian in vitro systems. In this study, two separate experiments were performed to study the molecular interactions between ER and AhR signalling pathways using different concentration of PCB-77 (an AhR-agonist) and time factor, respectively. Firstly, primary Atlantic salmon hepatocytes were exposed to nonylphenol (NP: 5 μM – an ER agonist) singly or in combination with 0.001, 0.01 and 1 μM PCB-77 and sampled at 48 h post-exposure. Secondly, hepatocytes were exposed to NP (5 μM) or PCB-77 (1 μM) singly or in combination for 12, 24, 48 and 72 h. Samples were analyzed using a validated real-time PCR for genes in the ER pathway or known to be NP-responsive and AhR pathway or known to be PCB-77 responsive. RESULTS: Our data showed a reciprocal inhibitory interaction between NP and PCB-77. PCB-77 produced anti-NP-mediated effect by decreasing the mRNA expression of ER-responsive genes. NP produced anti-AhR mediated effect or as inhibitor of AhRα, AhRR, ARNT, CYP1A1 and UDPGT expression. A novel aspect of the present study is that low (0.001 μM) and medium (0.01 μM) PCB-77 concentrations increased ERα mRNA expression above control and NP exposed levels, and at 12 h post-exposure, PCB-77 exposure alone produced significant elevation of ERα, ERβ and Zr-protein expressions above control levels. CONCLUSION: The findings in the present study demonstrate a complex mode of ER-AhR interactions that were dependent on time of exposure and concentration of individual chemicals (NP and PCB-77). This complex mode of interaction is further supported by the effect of PCB-77 on ERα and ERβ (shown as increase in transcription) with no concurrent activation of Vtg (but Zr-protein) response. These complex interactions between two different classes of ligand-activated receptors provide novel mechanistic insights on signalling pathways. Therefore, the degree of simultaneous interactions between the ER and AhR gene transcripts demonstrated in this study supports the concept of cross-talk between these signalling pathways

    Effect of the probiotic Lactobacillus rhamnosus on the expression of genes involved in European eel spermatogenesis

    Full text link
    [EN] Positive effects of probiotics on fish reproduction have been reported in several species. In the present study, 40 male European eels were weekly treated with recombinant hCG for 9 weeks and with three different concentrations (10(3), 10(5), and 10(6) CFU/mL) of probiotic Lactobacillus rhamnosus IMC 501 (Sinbyotec, Italy). The probiotics were daily added to the water from the sixth week of the hCG treatment. Males from the treated and control groups were sacrificed after 1, 2, and 3 weeks of probiotic treatment (seventh ninth weeks of hCG treatment); at this point, sperm and testis samples were also collected. Sperm volume was estimated, and motility was analyzed by computer-assisted sperm analysis software. Alternations in transcription of specific genes involved in reproductive process such as activin, androgen receptors alpha and beta (ar alpha and ar beta), progesterone receptor 1 (pr1), bone morphogenetic protein 15 (bmp15), and FSH receptor (fshr) were analyzed in the testis. After 2 weeks of probiotic treatment, sperm production and sperm motility parameters (percentage of motile cells and percentage of straight-swimming spermatozoa) were increased in the European eel treated with 105 CFU/mL compared to controls or to the other probiotic doses. These changes were associated with increases in messenger RNA expression of activin, ar alpha, ar beta, pr1, and fshr. Conversely, after 3 weeks, activin and pr1 expression decreased. No significant changes were observed on bmp15 expression throughout the duration of the treatment with 10(5) CFU/mL dose. The lowest and highest probiotic dose (10(3) and 10(6) CFU/mL, respectively) inhibited the transcription of all genes along all the experiment, except for ar alpha and ar beta after 1 week of probiotic treatment when compared to controls. The changes observed by transcriptomic analysis and the sperm parameters suggest that a treatment with L rhamnosus at 10(5) CFU/mL for 2 weeks could improve spermatogenesis process in Anguilla anguilla. (C) 2015 Elsevier Inc. All rights reserved.This study was funded by the European Community’s 7th FP (grant agreement no. 245257, PRO-EEL) and COST Office (Food and Agriculture COST Action FA1205: AQUAGAMETE) Victor Gallego and M. Carmen Vilchez have predoctoral grants from MINISTERIO DE ECONOMIA Y COMPETITIVIDAD (BES-2009-020310) and UNIVERSIDAD POLITECNICA DE VALENCIA PAID Program (2011-S2-02-6521), respectively. Fondo Ateneo 2012 to Oliana Carnevali.Vilchez Olivencia, MC.; Santangeli, S.; Maradonna, F.; Gioacchini, G.; Verdenelli, C.; Gallego Albiach, V.; Peñaranda, D.... (2015). Effect of the probiotic Lactobacillus rhamnosus on the expression of genes involved in European eel spermatogenesis. Theriogenology. 84(8):1321-1331. https://doi.org/10.1016/j.theriogenology.2015.07.011S1321133184

    Probiotic treatment reduces appetite and glucose level in the zebrafish model.

    Get PDF
    The gut microbiota regulates metabolic pathways that modulate the physiological state of hunger or satiety. Nutrients in the gut stimulate the release of several appetite modulators acting at central and peripheral levels to mediate appetite and glucose metabolism. After an eight-day exposure of zebrafish larvae to probiotic Lactobacillus rhamnosus, high-throughput sequence analysis evidenced the ability of the probiotic to modulate the microbial composition of the gastrointestinal tract. These changes were associated with a down-regulation and up-regulation of larval orexigenic and anorexigenic genes, respectively, an up-regulation of genes related to glucose level reduction and concomitantly reduced appetite and body glucose level. BODIPY-FL-pentanoic-acid staining revealed higher short chain fatty acids levels in the intestine of treated larvae. These results underline the capability of the probiotic to modulate the gut microbiota community and provides insight into how the probiotic interacts to regulate a novel gene network involved in glucose metabolism and appetite control, suggesting a possible role for L. rhamnosus in the treatment of impaired glucose tolerance and food intake disorders by gut microbiota manipulation

    EDCs: Focus on reproductive alterations in mammalian and nonmammalian models

    No full text
    It is well known that endocrine-disrupting chemicals, thanks to their ability to mimic or antagonize sexual hormone activity, can affect the reproductive functions of both wild animals and humans. Some of them are slow to break down in the environment, making them potentially hazardous over time. Starting in 2000, experts concluded there was credible evidence that very low doses of some hormone-like chemicals can adversely affect bodily functions in test animals. Many studies so far evaluated the endocrine properties of a plethora of chemicals, and in this chapter, attention will be mainly posed to Bisphenol A, its analogs, most common phthalates, and components of flame retardants. All these compounds affect body reproductive tissues in mammalian and nonmammalian species by interacting with the hypothalamic–pituitary–gonadal axis. Results presented within the chapter will help to create a comprehensive database from several scientific studies on how different substances interact with natural hormones and their receptors, thus contrasting or potentiating their physiological effects
    • …
    corecore