8 research outputs found

    Trapping of three-dimensional electrons and transition to two-dimensional transport in the three-dimensional topological insulator Bi2Se3 under high pressure

    Get PDF
    [EN] This paper reports an experimental and theoretical investigation on the electronic structure of bismuth selenide (Bi2Se3) up to 9 GPa. The optical gap of Bi2Se3 increases from 0.17 eV at ambient pressure to 0.45 eV at 8 GPa. The quenching of the Burstein-Moss effect in degenerate samples and the shift of the free-carrier plasma frequency to lower energies reveal a quick decrease of the bulk three-dimensional (3D) electron concentration under pressure. On increasing pressure the behavior of Hall electron concentration and mobility depends on the sample thickness, consistently with a gradual transition from mainly 3D transport at ambient pressure to mainly two-dimensional (2D) transport at high pressure. Two-carrier transport equations confirm the trapping of high-mobility 3D electrons, an effect that can be related to a shallow-to-deep transformation of donor levels, associated with a change in the ordering of the conduction band minima. The high apparent areal density and low electron mobility of 2D electrons are not compatible with their expected properties in a Dirac cone. Measured transport parameters at high pressure are most probably affected by the presence of holes, either in an accumulation surface layer or as minority carriers in the bulk. ©2012 American Physical SocietyThis work has been done under financial support from Spanish MICINN under Grants No. MAT2008-06873-C02-02, No. MAT2007-66129, No. MAT2010-21270-C04-03/04, No. CSD2007-00045, and Prometeo No. GV2011/035. The supercomputer time has been provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster.Segura, A.; Panchal, V.; Sánchez-Royo, JF.; Marín-Borrás, V.; Muñoz-Sanjosé, V.; Rodríguez-Hernández, P.; Muñoz, A.... (2012). Trapping of three-dimensional electrons and transition to two-dimensional transport in the three-dimensional topological insulator Bi2Se3 under high pressure. Physical Review B. 85:195139-1-195139-9. https://doi.org/10.1103/PhysRevB.85.195139S195139-1195139-985Mishra, S. K., Satpathy, S., & Jepsen, O. (1997). Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. Journal of Physics: Condensed Matter, 9(2), 461-470. doi:10.1088/0953-8984/9/2/014Hor, Y. S., Richardella, A., Roushan, P., Xia, Y., Checkelsky, J. G., Yazdani, A., … Cava, R. J. (2009). p-typeBi2Se3for topological insulator and low-temperature thermoelectric applications. Physical Review B, 79(19). doi:10.1103/physrevb.79.195208Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., & Zhang, S.-C. (2009). Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 5(6), 438-442. doi:10.1038/nphys1270Hasan, M. Z., & Kane, C. L. (2010). Colloquium: Topological insulators. Reviews of Modern Physics, 82(4), 3045-3067. doi:10.1103/revmodphys.82.3045Moore, J. E. (2010). The birth of topological insulators. Nature, 464(7286), 194-198. doi:10.1038/nature08916Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., … Hasan, M. Z. (2009). Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 5(6), 398-402. doi:10.1038/nphys1274Chen, Y. L., Analytis, J. G., Chu, J.-H., Liu, Z. K., Mo, S.-K., Qi, X. L., … Shen, Z.-X. (2009). Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3. Science, 325(5937), 178-181. doi:10.1126/science.1173034Hsieh, D., Xia, Y., Qian, D., Wray, L., Dil, J. H., Meier, F., … Hasan, M. Z. (2009). A tunable topological insulator in the spin helical Dirac transport regime. Nature, 460(7259), 1101-1105. doi:10.1038/nature08234Alpichshev, Z., Analytis, J. G., Chu, J.-H., Fisher, I. R., Chen, Y. L., Shen, Z. X., … Kapitulnik, A. (2010). STM Imaging of Electronic Waves on the Surface ofBi2Te3: Topologically Protected Surface States and Hexagonal Warping Effects. Physical Review Letters, 104(1). doi:10.1103/physrevlett.104.016401Roushan, P., Seo, J., Parker, C. V., Hor, Y. S., Hsieh, D., Qian, D., … Yazdani, A. (2009). Topological surface states protected from backscattering by chiral spin texture. Nature, 460(7259), 1106-1109. doi:10.1038/nature08308Butch, N. P., Kirshenbaum, K., Syers, P., Sushkov, A. B., Jenkins, G. S., Drew, H. D., & Paglione, J. (2010). Strong surface scattering in ultrahigh-mobilityBi2Se3topological insulator crystals. Physical Review B, 81(24). doi:10.1103/physrevb.81.241301Wang, Z., Lin, T., Wei, P., Liu, X., Dumas, R., Liu, K., & Shi, J. (2010). Tuning carrier type and density in Bi2Se3 by Ca-doping. Applied Physics Letters, 97(4), 042112. doi:10.1063/1.3473778Ren, Z., Taskin, A. A., Sasaki, S., Segawa, K., & Ando, Y. (2010). Large bulk resistivity and surface quantum oscillations in the topological insulatorBi2Te2Se. Physical Review B, 82(24). doi:10.1103/physrevb.82.241306Kulbachinskii, V. A., Miura, N., Nakagawa, H., Arimoto, H., Ikaida, T., Lostak, P., & Drasar, C. (1999). Conduction-band structure ofBi2−xSbxSe3mixed crystals by Shubnikov–de Haas and cyclotron resonance measurements in high magnetic fields. Physical Review B, 59(24), 15733-15739. doi:10.1103/physrevb.59.15733Analytis, J. G., McDonald, R. D., Riggs, S. C., Chu, J.-H., Boebinger, G. S., & Fisher, I. R. (2010). Two-dimensional surface state in the quantum limit of a topological insulator. Nature Physics, 6(12), 960-964. doi:10.1038/nphys1861Cho, S., Butch, N. P., Paglione, J., & Fuhrer, M. S. (2011). Insulating Behavior in Ultrathin Bismuth Selenide Field Effect Transistors. Nano Letters, 11(5), 1925-1927. doi:10.1021/nl200017fZhang, Y., He, K., Chang, C.-Z., Song, C.-L., Wang, L.-L., Chen, X., … Xue, Q.-K. (2010). Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nature Physics, 6(8), 584-588. doi:10.1038/nphys1689Kong, D., Cha, J. J., Lai, K., Peng, H., Analytis, J. G., Meister, S., … Cui, Y. (2011). Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi2Se3. ACS Nano, 5(6), 4698-4703. doi:10.1021/nn200556hBenia, H. M., Lin, C., Kern, K., & Ast, C. R. (2011). Reactive Chemical Doping of theBi2Se3Topological Insulator. Physical Review Letters, 107(17). doi:10.1103/physrevlett.107.177602King, P. D. C., Hatch, R. C., Bianchi, M., Ovsyannikov, R., Lupulescu, C., Landolt, G., … Hofmann, P. (2011). Large Tunable Rashba Spin Splitting of a Two-Dimensional Electron Gas inBi2Se3. Physical Review Letters, 107(9). doi:10.1103/physrevlett.107.096802Hamlin, J. J., Jeffries, J. R., Butch, N. P., Syers, P., Zocco, D. A., Weir, S. T., … Maple, M. B. (2011). High pressure transport properties of the topological insulator Bi2Se3. Journal of Physics: Condensed Matter, 24(3), 035602. doi:10.1088/0953-8984/24/3/035602Köhler, H., & Hartmann, J. (1974). Burstein Shift of the Absorption Edge of nBi2Se3. physica status solidi (b), 63(1), 171-176. doi:10.1002/pssb.2220630116Panchal, V., Segura, A., & Pellicer-Porres, J. (2011). Low-cost set-up for Fourier-transform infrared spectroscopy in diamond anvil cell from 4000 to 400 cm−1. High Pressure Research, 31(3), 445-453. doi:10.1080/08957959.2011.594049Chervin, J. C., Canny, B., Besson, J. M., & Pruzan, P. (1995). A diamond anvil cell for IR microspectroscopy. Review of Scientific Instruments, 66(3), 2595-2598. doi:10.1063/1.1145594Piermarini, G. J., Block, S., Barnett, J. D., & Forman, R. A. (1975). Calibration of the pressure dependence of theR1ruby fluorescence line to 195 kbar. Journal of Applied Physics, 46(6), 2774-2780. doi:10.1063/1.321957Errandonea, D., Segura, A., Martínez-García, D., & Muñoz-San Jose, V. (2009). Hall-effect and resistivity measurements in CdTe and ZnTe at high pressure: Electronic structure of impurities in the zinc-blende phase and the semimetallic or metallic character of the high-pressure phases. Physical Review B, 79(12). doi:10.1103/physrevb.79.125203Errandonea, D., Martínez-García, D., Segura, A., Ruiz-Fuertes, J., Lacomba-Perales, R., Fages, V., … Mũnoz-San José, V. (2006). High-pressure electrical transport measurements on p-type GaSe and InSe. High Pressure Research, 26(4), 513-516. doi:10.1080/08957950601101787Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863Köhler, H., & Becker, C. R. (1974). Optically Active Lattice Vibrations in Bi2Se3. physica status solidi (b), 61(2), 533-537. doi:10.1002/pssb.2220610218Vilaplana, R., Santamaría-Pérez, D., Gomis, O., Manjón, F. J., González, J., Segura, A., … Kucek, V. (2011). Structural and vibrational study of Bi2Se3under high pressure. Physical Review B, 84(18). doi:10.1103/physrevb.84.184110LaForge, A. D., Frenzel, A., Pursley, B. C., Lin, T., Liu, X., Shi, J., & Basov, D. N. (2010). Optical characterization ofBi2Se3in a magnetic field: Infrared evidence for magnetoelectric coupling in a topological insulator material. Physical Review B, 81(12). doi:10.1103/physrevb.81.125120Penn, D. R. (1962). Wave-Number-Dependent Dielectric Function of Semiconductors. Physical Review, 128(5), 2093-2097. doi:10.1103/physrev.128.2093PHILLIPS, J. C. (1970). Ionicity of the Chemical Bond in Crystals. Reviews of Modern Physics, 42(3), 317-356. doi:10.1103/revmodphys.42.317Van Vechten, J. A. (1969). Quantum Dielectric Theory of Electronegativity in Covalent Systems. I. Electronic Dielectric Constant. Physical Review, 182(3), 891-905. doi:10.1103/physrev.182.891Van Vechten, J. A. (1969). Quantum Dielectric Theory of Electronegativity in Covalent Systems. II. Ionization Potentials and Interband Transition Energies. Physical Review, 187(3), 1007-1020. doi:10.1103/physrev.187.1007Larson, P., Greanya, V. A., Tonjes, W. C., Liu, R., Mahanti, S. D., & Olson, C. G. (2002). Electronic structure ofBi2X3(X=S,Se,T)compounds:  Comparison of theoretical calculations with photoemission studies. Physical Review B, 65(8). doi:10.1103/physrevb.65.085108Chang, J., Jadaun, P., Register, L. F., Banerjee, S. K., & Sahu, B. (2011). Dielectric capping effects on binary and ternary topological insulator surface states. Physical Review B, 84(15). doi:10.1103/physrevb.84.155105Suski, T., Piotrzkowski, R., Wiśniewski, P., Litwin-Staszewska, E., & Dmowski, L. (1989). High pressure andDXcenters in heavily doped bulk GaAs. Physical Review B, 40(6), 4012-4021. doi:10.1103/physrevb.40.4012Errandonea, D., Segura, A., Sánchez-Royo, J. F., Mun-|Atoz, V., Grima, P., Chevy, A., & Ulrich, C. (1997). Investigation of conduction-band structure, electron-scattering mechanisms, and phase transitions in indium selenide by means of transport measurements under pressure. Physical Review B, 55(24), 16217-16225. doi:10.1103/physrevb.55.16217Analytis, J. G., Chu, J.-H., Chen, Y., Corredor, F., McDonald, R. D., Shen, Z. X., & Fisher, I. R. (2010). Bulk Fermi surface coexistence with Dirac surface state inBi2Se3: A comparison of photoemission and Shubnikov–de Haas measurements. Physical Review B, 81(20). doi:10.1103/physrevb.81.205407Köhler, H., & Fabbicius, A. (1975). Galvanomagnetic Properties of Bi2Se3with Free Carrier Densities below 5 × 1017 cm−3. physica status solidi (b), 71(2), 487-496. doi:10.1002/pssb.222071020

    High-pressure vibrational and optical study of Bi2Te3

    Get PDF
    We report an experimental and theoretical lattice dynamics study of bismuth telluride (Bi2Te3) up to 23 GPa together with an experimental and theoretical study of the optical absorption and reflection up to 10 GPa. The indirect bandgap of the low-pressure rhombohedral (R-3m) phase (α-Bi2Te3) was observed to decrease with pressure at a rate of −6 meV/GPa. In regard to lattice dynamics, Raman-active modes of α-Bi2Te3 were observed up to 7.4 GPa. The pressure dependence of their frequency and width provides evidence of the presence of an electronic-topological transition around 4.0 GPa. Above 7.4 GPa a phase transition is detected to the C2/m structure. On further increasing pressure two additional phase transitions, attributed to the C2/c and disordered bcc (Im-3m) phases, have been observed near 15.5 and 21.6 GPa in good agreement with the structures recently observed by means of x-ray diffraction at high pressures in Bi2Te3. After release of pressure the sample reverts back to the original rhombohedral phase after considerable hysteresis. Raman- and IR-mode symmetries, frequencies, and pressure coefficients in the different phases are reported and discussed.This work has been done under financial support from Spanish MICINN under projects MAT2008-06873-C02- 02, MAT2007-66129, Prometeo/2011-035, MAT2010-21270-C04-03/04, and CSD2007-00045 and supported by the Ministry of Education, Youth and Sports of the Czech Republic (MSM 0021627501)

    Observation of a charge delocalization from Se vacancies in Bi2Se3: A positron annihilation study of native defects

    No full text
    By means of positron annihilation lifetime spectroscopy, we have investigated the native defects present in Bi2Se3, which belongs to the family of topological insulators. We experimentally demonstrate that selenium vacancy defects (VSe1) are present in Bi2Se3 as-grown samples, and that their charge is delocalized as temperature increases. At least from 100 K up to room temperature both V0Se1 and V+Se1 charge states coexist. The observed charge delocalization determines the contribution of VSe1 defects to the n-type conductivity of Bi2Se3. These findings are supported by theoretical calculations, which show that vacancies of nonequivalent Se1 and Se2 selenium atoms are clearly differentiated by positron annihilation lifetime spectroscopy, enabling us to directly detect and quantify the most favorable type of selenium vacancy. In addition to open-volume defects, experimental data indicate the presence of defects that act as shallow traps, suggesting that more than one type of native defects coexist in Bi2Se3. As will be discussed, the presence of a dislocation density around 1010cm−2 could be the source of the detected shallow traps. Understanding the one-dimensional defects and the origin of the charge delocalization that leads Bi2Se3 to be an n-type semiconductor will help in the development of high-quality topological insulators based on this material.This work is supported by the Basque Government Grant No. IT-443-10 and partially supported by the Basque Government Grant No. IT-756-13, by the Spanish Ministry of Economy and Competitiveness (MINECO) under the project TEC2014-60173, and by the Generalitat Valenciana under the projects Prometeo II 2015/004 and ISIC/2012/008. I.U. also wants to acknowledge financial support from the Basque Government Grant No. PRE-2014-214 and J. Feuchtwanger for his technical support. V.M.-B. thanks the University of Valencia for its predoctoral fellowships. Finally, we would also like to thank BCMaterials for its economic support.Peer reviewe
    corecore