36 research outputs found

    Activation of D1 and D2 dopamine receptors increases the activity of the somatostatin receptor-effector system in the rat frontoparietal cortex

    Get PDF
    The role of dopamine D1 and D2 receptor subtypes in the regulation, in vivo, of the somatostatin (SRIF) receptor-effector system in rat frontoparietal cortex was investigated. The D1-receptor agonist SKF 38393 (4 mg/kg) or the D2-receptor agonist bromocriptine (2 mg/kg), administered intraperitoneally to rats, increased the number of SRIF receptors without altering the affinity constant, an effect antagonized by both SCH 23390 (0.25 mg/kg) and raclopride (5 mg/kg), D1 and D2 receptor antagonists, respectively. These antagonists alone had no effect on [125I]Tyr3 octreotide binding to its receptors. No change in binding was detected when the dopamine agonists were added in vitro. Basal adenylyl cyclase (AC) activity was increased by SKF 38393 treatment and decreased by bromocriptine. Octreotide (SMS 201-995)-mediated inhibition of basal and forskolin-stimulated AC was increased by SKF 38393 or bromocriptine treatment. In frontoparietal cortical slices, basal inositol-1,4,5-triphosphate (IP3) levels were decreased by bromocriptine treatment but were unaffected by SKF 38393. SMS 201-995 increased the IP3 accumulation in control, SKF 38393-, and bromocriptine-treated rats. Insofar as SRIF and dopamine appear to be involved in motor regulation and could well modulate somatosensory functions in frontal and parietal cortex, respectively, heterologous receptor regulation may have important repercussions regarding the control exerted by these neurotransmitters on frontal and parietal cortical function in the intact animal. J. Neurosci. Res. 62:91–98, 2000. © 2000 Wiley-Liss, Inc.We thank Martin Lexell from Centro de Lenguas Extranjeras of the Universidad de Alcala´, Angela Martı´n Espinosa for her excellent technical assistance, and Lilian Puebla and Jerry Keller for their linguistic assistance. We express our sincere thanks to Astra Ifesa (Barcelona, Spain) for the supply of raclopride and to Sandoz (Basel, Switzerland) for the supply of SMS 201-995 and SDZ 204- 090

    Ethanol-induced modification of somatostatin-responsive adenylyl cyclase in rat exocrine pancreas

    Get PDF
    Male rats were given 10% (w/v) ethanol in drinking fluid during the first week, 15% (w/v) during the second week, 20% (w/v) during the third, and 25% (w/v) during the fourth week, at the end of which they were kept on 25% (w/v) ethanol drinking water for 3 weeks. Some animals were then allowed the withdrawal of ethanol for a period of 2 weeks or 7 weeks. No significant differences were seen for the basal and forskolin (FK)-stimulated adenylate cyclase (AC) enzyme activities in the pancreatic acinar membranes of ethanol-treated and ethanol withdrawal rats as compared to the control group. Chronic ethanol ingestion resulted in an attenuation of somatostatin(SS)-inhibited FK-stimulated AC in rat pancreatic acinar membranes. The ability of the stable GTP analogue S'-guanylylimidodiphosphate (Gpp[NH]p) to inhibit FK-stimulated AC activity was also decreased in pancreatic acinar membranes from ethanol-treated rats. Gpp[NH]p was a much less potent inhibitor of SS binding in the pancreatic acinar membranes from chronic ethanol-treated animals than in those from controls, suggesting a change of G(i). A significant reduction in the number of 125I-Tyr11-SS receptors was observed after ethanol ingestion, when compared with control values. Two weeks after the replacement of the ethanol solution by water, the ethanol effect on the parameters cited above persisted. At week 7 of withdrawal, these parameters reached the level-of water controls. Ethanol administration did not affect either the number or the affinity of secretin receptors as compared to control values which suggests that the change in SS binding is not a non-specific effect. Neither chronic ethanol consumption nor withdrawal affected somatostatin-like immunoreactivity (SSLI). These results suggest that the attenuated inhibition of AC by SS in pancreatic acinar membranes from ethanol-treated rats and ethanol withdrawal (2 weeks) rats may be caused by decreases in both G; activity and in the number of SS receptors. Alternatively, an uncoupling of SS receptors from G(i) and/or a decrease in the level of functional G; may result in both a decrease in apparent B(max) for SS binding and in SS-mediated inhibition of AC. Since SS has been suggested to be an inhibitor of basal and cholecystokinin (CCK)- and/or secretin-stimulated exocrine pancreatic secretion, it is tempting to speculate that the impairment of the SS receptor/effector system seen in the present study can participate in the increase of basal pancreatic exocrine secretion described after chronic ethanol consumption

    Activity of the hippocampal somatostatinergic system following daily administration of melatonin

    Get PDF
    If melatonin or its analogs are to be used therapeutically in humans, their chronic effects on responsiveness of melatonin target cells need to be assessed. We have previously demonstrated that acute melatonin treatment regulates the somatostatinergic system in the rat hippocampus. In the present study, we have investigated the effects of subchronic and chronic daily treatment with melatonin on the somatostatinergic system in the rat hippocampus. Male Wistar rats (200-250 g) were injected with melatonin (25 ¿g/kg body weight, subcutaneously) daily for 4, 7 or 14 days and sacrificed 24 h after the last injection. Melatonin administration for 4 days induced a decrease in the hippocampal somatostatin (SRIF)-like immunoreactivity content as well as a decrease in the number of SRIF receptors and an increase in their apparent affinity. The decreased number of SRIF receptors in the melatonin (4 days)-treated rats was associated with a decreased capacity of SRIF to inhibit both basal and forskolin-stimulated adenylyl cyclase activity. These melatonin-induced effects reversed to control values after 7 or 14 days of treatment. Hippocampal membranes from control and melatonin-treated rats showed similar Gi and Gs activities. Melatonin treatment altered neither the functional Gi activity nor the Gi¿1 or Gi¿2 levels at any of the time periods studied. The present results suggest that chronic exposure to melatonin results in a tolerance of the hippocampus to this hormone

    Response of rat cerebral somatostatinergic system to a high ammonia diet

    Get PDF
    It has been reported that ingestion of an ammonium-containing diet produces hyperammonemia without encephalopathy, thus permitting the study of the specific effects of ammonia toxicity. The present study investigated the rat cerebral somatostatinergic system using this experimental model of hyperammonemia. Wistar rats were fed a high ammonia diet prepared by mixing a standard diet with ammonium acetate (20% w/w); in addition, 5 mM of ammonium acetate was added to their water supply. Control rats were fed with a standard diet. The animals were sacrificed at 3, 7 and 15 days of ammonia ingestion. Ammonia levels in blood had increased ¿3-fold at 7 days of ammonia ingestion. These changes were associated with a significant decrease in the specific binding of somatostatin (SS) to putative receptors sites in the frontoparietal cortex and hippocampus at 7 and 15 days after starting the high ammonia diet. Scatchard analysis shows that the decrease in SS binding resulted from a decrease in the number of available SS receptors rather than a change in receptor affinity. No changes in the somatostatin-like immunoreactivity content (SSLI) were detected in either brain area at the three study times. These results suggest that hyperammonemia alone can affect the rat brain somatostatinergic system. However, the animal model of hyperammonemia used here is insufficient to produce encephalopathy despite the significant increase in serum ammonia

    Adenylate cyclase activity during exocrine pancreatic proliferation in the rat

    Get PDF
    Adenylate cyclase activity in pancreatic acinar cell membranes was determined in rats that had undergone a treatment with pentagastrin (250 μg/kg, intraperitoneal three times daily) for 1 week or that had undergone small bower resection (90%) and were sacrified at 2 weeks, 1 month and 6 months after intervention. Both treatments are potent stimulators of pancreatic acinar cell proliferation. Adenylate cyclase activity was similar under basal conditions and after the diterpene forskolin stimulation in pancreatic acinar membranes from all groups studied. The ability of low concentrations of the stable GTP analogue, 5'-guanylylimidodiphosphate (Gpp[NH]p) to inhibit forskolin- stimulated adenylate cyclase activity was decreased in pancreatic acinar membranes from enterectomized rats at 2 weeks and 1 month after the operation and returned to control values at 6 months after enterectomy. Stimulation of adenylate cyclase by high concentration of Gpp[NH]p or by secretin (10-8 M) was higher in both pancreatic hyperplasia conditions as compared with control animals. These findings suggest that the coupling efficiency of the G(s) protein to adenylate cyclase from pancreatic acinar membranes is enhanced without any alterations in the catalytic activity of the enzyme during pancreatic proliferation. In addition, it is possible that the highly regulated pancreatic acinar adenylate cyclase activity may be necessary to regulate pancreatic acinar cell proliferation

    Differential effects of ethanol ingestion on somatostatin content,somatostatin receptors and adenylyl cyclase activity in thefrontoparietal cortex of virgin and parturient rats

    Get PDF
    Chronic ethanol ingestion decreases the number of somatostatin (SRIF) receptors in the rat frontoparietal cortex and female sex hormones modulate the effects of ethanol in the brain. Therefore, we investigated the differential effects of ethanol consumption on the SRIFergic system in the frontoparietal cortex of virgin and parturient rats given ethanol in their drinking water before and during gestation. In parturient rats, ethanol consumption decreased the density of SRIF receptors (25%, p < 0.01 vs control parturient group) whereas the SRIF-like immunoreactivity (SRIF-LI) content was increased (140%, p < 0.01). In virgin rats, ethanol ingestion decreased the density of SRIF receptors (42%, p < 0.01) more than in alcoholic parturient rats. SRIF-LI levels were unaffected. The inhibitory effect of SRIF on basal and forskolin-stimulated adenylyl cyclase was significantly lower in alcoholic virgin rats as compared to alcoholic parturient rats. No differences in the levels of the G inhibitory (Gi) ¿1 and Gi¿2 proteins were observed among the experimental groups. These results suggest that gestation may confer partial resistance to the ethanol-induced effect on the SRIFergic system

    Relationship between IGF-1 and body weight in inflammatory bowel diseases: Cellular and molecular mechanisms involved

    Get PDF
    Inflammatory bowel diseases (IBD), represented by ulcerative colitis (UC) and Crohn''s disease (CD), are characterized by chronic inflammation of the gastrointestinal tract, what leads to diarrhea, malnutrition, and weight loss. Depression of the growth hormone-insulin-like growth factor-1 axis (GH-IGF-1 axis) could be responsible of these symptoms. We demonstrate that long-term treatment (54 weeks) of adult CD patients with adalimumab (ADA) results in a decrease in serum IGF-1 without changes in serum IGF-1 binding protein (IGF1BP4). These results prompted us to conduct a preclinical study to test the efficiency of IGF-1 in the medication for experimental colitis. IGF-1 treatment of rats with DSS-induced colitis has a beneficial effect on the following circulating biochemical parameters: glucose, albumin, and total protein levels. In this experimental group we also observed healthy maintenance of colon size, body weight, and lean mass in comparison with the DSS-only group. Histological analysis revealed restoration of the mucosal barrier with the IGF-1 treatment, which was characterized by healthy quantities of mucin production, structural maintenance of adherers junctions (AJs), recuperation of E-cadherin and ß-catenin levels and decrease in infiltrating immune cells and in metalloproteinase-2 levels. The experimentally induced colitis caused activation of apoptosis markers, including cleaved caspase 3, caspase 8, and PARP and decreases cell-cycle checkpoint activators including phosphorylated Rb, cyclin E, and E2F1. The IGF-1 treatment inhibited cyclin E depletion and partially protects PARP levels. The beneficial effects of IGF-1 in experimental colitis could be explained by a re-sensitization of the IGF-1/IRS-1/AKT cascade to exogenous IGF-1. Given these results, we postulate that IGF-1 treatment of IBD patients could prove to be successful in reducing disease pathology. © 2021 The Author

    Effect of calmodulin antagonists on phospholipase D activity in SH-SY5Y cells.

    No full text
    The aim of this study was to investigate the involvement of calmodulin in phospholipase D activation in SH-SY5Y cells. Cells prelabelled with [3H]-palmitic acid were incubated with calmodulin antagonists and/or other compounds. Phosphatidylethanol, a specific marker for phospholipase D activity, and phosphatidic acid were analysed. The calmodulin antagonists, calmidazolium and trifluoperazine, induced an extensive increase in phosphatidylethanol formation, and thus increased basal phospholipase D activity, in a dose- and time-dependent manner. The effect of calmidazolium on carbachol-induced activation of muscarinic receptors was also studied. Calmidazolium did not significantly affect the amount of phosphatidylethanol formed following carbachol addition. However, taking into account the increase in basal activity observed after calmidazolium addition, calmidazolium probably inhibits the muscarinic receptor-induced phospholipase D activation. In addition to phosphatidylethanol, basal phosphatidic acid levels were also increased after calmidazolium and trifluoperazine addition. Incubation with calmidazolium (10 microM) for 10 min induced a two-fold increase in phosphatidic acid. The calmidazolium-induced increase in basal phospholipase D activity was not affected by the protein kinase inhibitors H7 and staurosporine. On the other hand tyrosine kinase inhibitors abolished the calmidazolium-induced activation of phospholipase D. Calmidazolium also induced tyrosine phosphorylation in parallel to the phospholipase D activation. In conclusion, our data indicate that calmodulin antagonists induce phospholipase D activity in SH-SY5Y cells via a tyrosine kinase dependent pathway. This may point to a negative control of phospholipase D by calmodulin although a calmodulin-independent mechanism cannot be excluded. Calmodulin antagonists may be useful tools to further elucidate the mechanisms of phospholipase D regulation
    corecore