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Abstract

Chronic ethanol ingestion decreases the number of somatostatin (SRIF) receptors in the rat frontoparietal cortex

and female sex hormones modulate the effects of ethanol in the brain. Therefore, we investigated the differential

effects of ethanol consumption on the SRIFergic system in the frontoparietal cortex of virgin and parturient rats

given ethanol in their drinking water before and during gestation. In parturient rats, ethanol consumption decreased

the density of SRIF receptors (25%, pb0.01 vs control parturient group) whereas the SRIF-like immunoreactivity

(SRIF-LI) content was increased (140%, pb0.01). In virgin rats, ethanol ingestion decreased the density of SRIF

receptors (42%, pb0.01) more than in alcoholic parturient rats. SRIF-LI levels were unaffected. The inhibitory

effect of SRIF on basal and forskolin-stimulated adenylyl cyclase was significantly lower in alcoholic virgin rats as

compared to alcoholic parturient rats. No differences in the levels of the G inhibitory (Gi) a1 and Gia2 proteins

were observed among the experimental groups. These results suggest that gestation may confer partial resistance to

the ethanol-induced effect on the SRIFergic system.
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Introduction

Excessive alcohol intake results in a variety of medical, psychological, and sociological disorders that

have made alcoholism one of modern societyTs major problems (Lynskey et al., 2003). Chronic ethanol

exposure can profoundly modify the structure and function of the mature central nervous system (CNS)

and affect several neurotransmitter systems (Dahchour and De Witte, 2000). In this regard, we have

previously reported the effects of acute and chronic ethanol administration and its withdrawal on the

levels and binding of somatostatin (SRIF) in the rat brain (Barrios et al., 1990).

It is well known that maternal ethanol ingestion during pregnancy has a negative effect on offspring

development both in humans and experimental animals (Olney et al., 2002). Chronic maternal ethanol

consumption is associated with regional alterations in the levels of several neurotransmitters,

neurotransmitter uptake, and receptor levels in the offspring (Mena et al., 1982). In this context, our

group has shown that maternal ethanol ingestion modifies brain SRIF concentration and binding in the

developing rat brain (Barrios et al., 1991). However, very few studies have examined the effects of

ethanol consumption on the CNS of rodent dams.

The habitual parturition process in the rat is characterized by a significant increase in motor activity

(Wigger et al., 1999), although the underlying mechanisms of these changes are unknown. We have

shown that on the day of delivery, there is an increase in the number of SRIF receptors in the

frontoparietal cortex of rat dams (Barrios et al., 1993). Since SRIF increases locomotor activity in the rat

(Justino et al., 1997) and chronic ethanol ingestion decreases the number of SRIF receptors in the rat

frontoparietal cortex (Barrios et al., 1990), we hypothesized that the SRIFergic system could be

implicated, at least partly, in the decrease of motor activity found in parturient rats that have consumed

ethanol during pregnancy.

SRIF, one of the most abundant neuropeptides in the CNS, has a role as a neurotransmitter and

neuromodulator in several neurophysiological functions (Blake et al., 2004). The actions of SRIF are

mediated via five heptahelical transmembrane receptors and binding of SRIF to these receptors in

native membranes triggers the recruitment of a wide variety of intracellular effectors through the

activation of pertussis toxin-sensitive and -insensitive G proteins (Olias et al., 2004). One of the

most widely studied intracellular effectors is the adenylyl cyclase (AC)-cyclic adenosine mono-

phosphate (cAMP)-protein kinase A pathway. In the rat cerebral cortex, hippocampus and striatum,

SRIF inhibits basal and stimulated cAMP production (Schettini et al., 1989). Specific G protein

subunits link native SRIF receptors to AC and appear to be responsible for transducing SRIF

receptor inhibition of AC. In addition, the cAMP signalling cascade has a role in ethanol tolerance

(Pandey et al., 2001).

In the present study, we tested the hypothesis that ethanol ingestion during gestation affects the

SRIFergic system in the rat frontoparietal cortex of dams. Because female hormones modulate the

impact of ethanol on the brain (Van Doren et al., 2000), we also compared the effects of chronic ethanol

ingestion between parturient and virgin rats. The day of delivery was chosen for this study, given the

modifications of female hormones found at this time-period. To this end, we examined SRIF levels, the

binding of 125I-Tyr11-SRIF to specific SRIF receptors, basal and forskolin-stimulated AC activity and

SRIF-mediated inhibition of AC activity in frontoparietal cortical membranes of alcoholic rats on the day

of delivery and in normal virgin female rats. In addition, we assessed the functional activity of the

guanine nucleotide-binding inhibitory protein (Gi) and determined the levels of the ai1 and ai2 G

protein subunits.
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Materials and methods

Chemicals

Synthetic [Tyr11]-SRIF and SRIF-14 were purchased from Universal Biological (Cambridge, UK);

carrier free Na125I (IMS 30, 100 mCi/ml) was purchased from the Radiochemical Centre (Amersham,

Buckinghamshire, UK), bacitracin and bovine serum albumin (fraction V) were obtained from Sigma

(St. Louis, MO, USA); and ethanol from Merck (Darmstadt, Germany). The antibody used in the

radioimmunoassay technique was raised in rabbits against SRIF-14 conjugated to bovine serum

albumin and is specific for SRIF. Since SRIF-14 also constitutes the COOH-terminal portion of SRIF-

28, the antiserum does not distinguish between these two forms. The binding of SRIF-14 to this

antibody does not depend on an intact disulfide bond since reaction with 0.1% mercaptoethanol

(boiling water bath, 5 min) did not change the immunoreactivity of the peptide. Cross-reactivity with

other peptides was less than 0.5%. Specific antiserum against ai1 (MAB 3075) or ai2 (MAB 3077) G

protein subunits was obtained from Chemicon International (California, USA). Nitrocellulose

membranes and the chemiluminiscence western blotting detection system were purchased from

Amersham (Buckinghamshire, UK).

Animal treatment

Female Sprague-Dawley rats weighing 150F10 g from our colony were grouped three per cage and

kept under automatically controlled humidity (65F5%), temperature (22–23 8C), and 12:12 h light-dark

cycles. Daily caloric intake was estimated by the specific calorific value of the commercial Purina Chow

used (3,200 cal/kg) and the amount of food consumed by the animals, which was determined by daily

weighing of the offered and remaining food. The daily fluid intake was also determined by volume

difference between the offered and remaining liquid, and ethanol calories were estimated as 7.1 kcal/g.

Twenty animals were divided into four groups (n=5 per group) and treated according to the following

schedules (Testar et al., 1986): ethanol-treated rats received Purina Rat Chow ad libitum and 10, 15, 20

and 25% (v/v) ethanol in their drinking water on successive weeks before pregnancy. At the end of the

4th week the animals were mated with normal males and given 25% ethanol in their drinking water

during gestation. This dose of ethanol represented 30–35% of the total caloric intake. Another group of

parturient rats drank only water during these same time-periods. Virgin animals received ethanol or water

for equivalent time periods. Parturient and virgin control rats received a standard diet ad libitum. The

parturient rats were decapitated on the day of delivery and the virgin rats at an equivalent time period.

The brains were removed and the frontoparietal cortex was rapidly dissected on ice. The animal studies

were carried out in accordance to the Declaration of Helsinki.

Blood ethanol levels

After decapitation, blood samples were collected from the neck wound into heparinized receptacles

for immediate plasma separation. Plasma aliquots of 0.5 ml were used for determination of ethanol by

head space gas chromatography as previously described (Espinet and Argilés, 1984), using a Perkin-

Elmer gas chromatograph (model Sigma 3B) equipped with a flame ionization detector, a head-space

injection device, and a Sigma 15 integrator and recorder.
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Tissue extraction and SRIF radioimmunoassay

SRIF was extracted from frontoparietal cortical tissue in 2 M acetic acid by homogenization

and boiling and was measured by a specific radioimmunoassay (Patel and Reichlin, 1978) with

a sensitivity limit of 10 pg/ml. Dilution curves for frontoparietal cortical extracts were parallel

to the standard curve. The intra- and interassay variation coefficients were 5.7 and 7.5%,

respectively.

Membrane preparations

The frontoparietal cortex was homogenized in 10 mM HEPES-KOH buffer, pH 7.6 (10 wt/vol),

with a Brinkmann polytron homogenizer (setting 5, 15 s). The homogenate was spun at 600 g for 5

min at 48 C, and the supernatant was centrifuged at 48000 g for 30 min at 4 8C. The resulting pellet

was suspended in 10 mM HEPES-KOH, pH 7.6 (10% w/v) and then centrifuged as before. The

resultant pellet was resuspended in 50 mM Tris-HCl buffer (pH 7.5). Samples were stored at � 70 8C
until the day of assay.

Binding assay

[Tyr11]-SRIF was radioiodinated by the chloramine-T method (Greenwood et al., 1963). The tracer

was purified in a Sephadex G-25 coarse column (1�100 cm) that had been equilibrated with 0.1 M

acetic acid containing 0.1% bovine serum albumin (w/v). The specific radioactivity of the tracer was

about 600 Ci/mmol.

Specific SRIF binding was measured according to the modified method of Czernik and Petrack

(1983). Frontoparietal cortical membranes (0.15 mg protein/ml) were incubated in 250 Al of a medium

containing 50 mM Tris-HCl buffer (pH 7.5), 5 mM MgCl2, 0.2% (w/v) bovine serum albumin and 0.1

mg/ml bacitracin with 250 pM of 125I-[Tyr11]-SRIF in either the absence or presence of 0.01–10 nM

unlabelled SRIF. After a 60-min incubation at 30 8C, the free radioligand was separated from the

bound radioligand by centrifugation at 12000 g for 1.5 min, and the resultant pellet was counted in a

Beckman gamma counter. Nonspecific binding, i.e., binding occurring in the presence of a high

concentration (10� 7 M) of unlabeled SRIF, represented ~ 20% of the binding observed in the absence

of the native peptide and was substracted from the total bound radioactivity in order to obtain the

corresponding specific binding. The inactivation of 125I-[Tyr11]-SRIF in the incubation medium after

exposure to membranes was studied by observing the ability of the peptide to rebind to fresh

membranes.

Adenylyl cyclase assay

For AC activity measurement, frontoparietal cortical membranes (60 Ag/ml) were incubated with 1.5

mM ATP, 5 mM MgSO4, 10 AM GTP, an ATP-regenerating system (7.5 mg/ml creatin phosphate and 1

mg/ml creatine kinase), 1 mM 3-isobutyl-1-methylxanthine, 0.1 mM phenylmethylsulfonyl fluoride, 1

mg/ml bacitracin, 1 mM EDTA, and test substances (10�4 M SRIF or 10�5 M forskolin) in 100 Al of
0.025 M Tris-HCl buffer (pH 7.4). After a 15 min incubation at 30 8C, the reaction was stopped by

heating the mixture for 3 min. After cooling, 200 Al of an alumina slurry (0.75 g/ml in Tris-HCl buffer,



V. Barrios et al. / Life Sciences 77 (2005) 1094–11051098
pH 7.4) were added and the suspension was centrifuged. The supernatant was taken for assay of cAMP

by the method of Gilman (1970).

Immunodetection of ai subunits of G proteins

Purified cell membranes (100 Ag) were solubilized in SDS-sample buffer. The proteins were

then run on a 12% SDS-polyacrilamide gel. The transfer of proteins to nitrocellulose membranes

and the immunodetection of the ai1 or ai2 subunits of the G proteins using the specific mouse

anti-Gai monoclonal antibodies MAB3075 and MAB3077, respectively, were carried out as

described elsewhere (Mumby et al., 1986). Briefly, after protein transfer, the nitrocellulose

membranes were preincubated with blocking buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl,

0.05% (v/v) Tween-20, and 5% (w/v) non-fat dry milk). Antisera were diluted in the same buffer

(dilution 1:1000) and the nitrocellulose membranes incubated overnight at 4 8C. After washing, the
nitrocellulose membranes were incubated with horseradish-peroxidase conjugated goat anti-mouse

IgG (1:2000) during 1 hour for the immunodetection of the ai1 or ai2 subunits. After washing,

the bound immunoreactive proteins were detected by a chemiluminescent western blotting detection

system.

Statistical analysis

The computer program Ligand was used to analyze the binding data. The use of this program

enabled models of receptors, which best fit a given set of binding data to be selected. The same

program was also used to present data in the form of Scatchard plots and to compute values for

receptor affinity (Kd) and density (Bmax) that best fit the sets of binding data for each rat. Statistical

comparison to assess a possible interaction between the effects of ethanol treatment and the gestational

state was performed by two-way analysis of variance (ANOVA). Statistical analysis of all data was

carried out by one-way ANOVA and the Student́s Newman-Keuls test. Mean values were considered

significantly different when the p values were less than 0.05. Each individual experiment was

performed in duplicate.
Results

Blood ethanol levels

Ethanol concentrations at the time that the rats were killed were 29.8F4.6 and 27.0F4.9 mmol/l in

virgin and parturient ethanol-treated rats, respectively.

Daily food intake, body weight and caloric intake

Average daily food intake was 7.69F0.16, 5.48F0.12, 7.61F0.30 and 4.68F0.25 g/100 g

body weight in virgin controls, virgin ethanol-treated rats, parturient controls and parturient-treated

rats, respectively (pb0.01 vs respective control group). Body weight at the end of the study was

230F5, 214F4, 348F10 and 276F8 in the same experimental groups (pb0.01 vs respective
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control group). However, daily caloric intake revealed no significant differences among the

experimental groups.

Effects of chronic ethanol ingestion on SRIF receptors

Preliminary experiments confirmed that the specific binding of 125I-[Tyr11]-SRIF to frontoparietal

cortical membranes changed linearly with protein concentration and was time-dependent in all

experimental groups. An apparent equilibrium was observed between 50 and 180 min at 30 8C (data not

shown). All subsequent binding experiments were therefore conducted at 30 8C for 60 min.

Frontoparietal cortical membranes from all experimental groups showed a similar peptide degradation

capacity and the values varied by no more than 10% in all groups.

Two-way ANOVA indicated that ethanol treatment decreases the SRIF receptor density with

different degrees of intensity in parturient and virgin rats (pb0.05). Ethanol ingestion before and

during pregnancy decreased the number of SRIF receptors (25%, pb0.01 vs control parturient rats) in

the frontoparietal cortex on the day of delivery. The affinity of the SRIF receptors was consistently

unchanged (Table 1, Fig. 1). Chronic ethanol ingestion in virgin rats decreased the number of SRIF

receptors (42%, pb0.01) in the frontoparietal cortex with respect to control virgin rats. The affinity of

the SRIF receptors was unchanged (Table 1, Fig. 1).

Ethanol-induced effects on SRIF-LI content

Ethanol ingestion before and during pregnancy restored the SRIF-LI levels in the frontoparietal cortex

seen in control parturient rats (Fig. 2). In contrast, chronic ethanol ingestion in virgin rats did not modify

SRIF-LI levels with respect to control virgin rats (Fig. 2).

Ethanol ingestion decreases SRIF-mediated inhibition of AC activity

Since SRIF receptors are coupled to AC in an inhibitory fashion, resulting in a decrease in the

second messenger cAMP, we examined basal and forskolin-stimulated AC activity, as well as SRIF-

mediated inhibition of the enzyme in frontoparietal cortical membranes. The capacity of SRIF to

inhibit both basal and forskolin-stimulated AC activity was reduced in frontoparietal cortical
Table 1

Effects of ethanol on the equilibrium parameters for binding of 125I-[Tyr11]-somatostatin to membranes from the frontoparietal

cortex of virgin control, virgin ethanol-treated, parturient control and parturient ethanol-treated rats

Kd Bmax Decrease of SRIF receptors

Virgin control 0.40F0.04 404F18

Virgin ethanol 0.43F0.08 233F20a 42F3%

Parturient control 0.55F0.19 629F51

Parturient ethanol 0.53F0.06 471F32a 25F3%##

Binding parameters were obtained by Scatchard analysis. Kd is the dissociation constant expressed in nM; Bmax is the maximum

binding capacity expressed in fmol/mg protein. Each value is the meanFS.E.M. of five assays performed in duplicate.
a pb0.01 vs respective control group.

## pb0.01 vs virgin ethanol-treated group.
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Fig. 1. A: Competitive inhibition of specific 125I-[Tyr11]-somatostatin (125I-[Tyr11]-SRIF, 250 pM) binding by unlabeled SRIF

to membranes from the frontoparietal cortex of control virgin rats (open circles) and ethanol-treated virgin rats (solid circles).

Each point represents the mean obtained from five rats. B: Scatchard analysis of the same data. C: Competitive inhibition of

specific 125I-[Tyr11]-SRIF (250 pM) binding by unlabeled SRIF to membranes from the frontoparietal cortex of control

parturient rats (open circles) and ethanol-treated parturient rats (solid circles). D: Scatchard analysis of the same data. The

corresponding equilibrium binding parameters are included in Table 1.
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Table 2

Effects of ethanol on basal and forskolin (10�5 M)-stimulated adenylyl cyclase (AC) activity (pmol/min/mg protein) and on

SRIF (10�4 M)-mediated inhibition of AC activity in frontoparietal cortical membranes of virgin control and virgin ethanol-

treated rats and parturient control and parturient ethanol-treated rats

Virgin

control

Virgin

ethanol

Parturient

control

Parturient

ethanol

Basal activity 513F57 471F38 561F34 527F50

Basal activity+10�4 M SRIF 323F28 372F43 331F40 352F22

% SRIF inhibition of basal activity 37.1F6.8 21.0F8.0T 40.1F6.8 33.5F5.7

+ 10�5 M forskolin 1750F157 1739F112 2022F137 2146F53

10�5 M forskolin+10�4 M SRIF 1196F19 1354F39 1389F61 1618F153

% SRIF inhibition of forskolin-stimulated activity 30.1F4.9 20.2F4.2* 29.3F7.4 24.6F7.1

Decrease of % SRIF inhibition of basal activity 43.4% 16.5%TT
Decrease of % SRIF inhibition of forskolin-stimulated activity 32.9% 16.0%TT

Values represent the meanFS.E.M. The number of rats in each experimental group was five.

T pb0.05 vs control.

TT pb0.01 vs virgin group.
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membranes of virgin ethanol-treated rats to a greater extent than in alcoholic mothers on the day of

delivery (Table 2), as compared to their respective control groups.

Ethanol and Gi protein levels

The next question we addressed was whether the functional capacity of the SRIF receptors was altered

by ethanol ingestion. To this aim, western blot analyses of the a1 or a2 subunits of inhibitory Gi proteins

were performed in frontoparietal cortical membranes. No significant differences in the levels of these

protein subunits were detected between the experimental groups (data not shown).
Discussion

The present results show that ethanol ingestion during gestation impedes the decline in SRIF content

caused by pregnancy and induces a decrease in the density of SRIF receptors (25%) in the frontoparietal

cortex on the day of delivery with respect to control parturient rats. The ethanol-induced decrease in the

SRIF receptor density was less than that observed in virgin ethanol-treated rats (42%).

The experimental protocol for the prolonged ethanol treatment of the parturient rat used in this

study was the same as that employed by Testar et al. (1986). In this model, the percentage of ethanol-

derived calories and the maternal blood ethanol levels were similar to those reported when ethanol

was given in a liquid diet. A control pair-fed group has not been studied, because these authors

reported that pair-fed rats have a higher degree of undernutrition than alcohol-treated animals, as

shown by a reduced body weight gain and less frequent viable gestations. This model induces

tolerance to ethanol in alcohol-treated virgin animals, whereas no tolerance is observed in alcohol-

treated parturient rats (Través and López-Tejero, 1994). Our results cannot be attributed to a possible

undernutrition, because dietary restriction does not modify SRIF nor SRIF receptor expression

(Shimokawa et al., 2000; Shimokawa et al., 2003). The results obtained by stoichiometric analyses
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allow us to obtain a fair estimation of the total SRIF receptor density. Thus, present-day techniques,

such as in situ hybridization and quantification by western blot present a good relationship with

quantification of receptor density performed by radioligand binding (Schulz et al., 2000; Fehlmann et

al., 2000). Nonetheless, future experiments will be necessary in order to analyze the participation of

individual SRIF receptor subtypes in the ethanol-induced effects.

This treatment has also been shown to reduce the serotonin, dopamine and acetylcholine content in

different brain regions (Arendt et al., 1989). In this context, our group demonstrated that a decrease in

serotoninergic transmission leads to a decrease in the SRIF receptor density and that dopamine

stimulation induces a rise in the number of SRIF receptors (Rodrı́guez-Sánchez et al., 1997). Other

factors such as GABA could be implicated in the observed decrease of SRIF receptors. Indeed, GABA is

augmented in alcoholic mothers on the day of delivery (Mena et al., 1982) and stimulation of

GABAergic neurotransmission decreases the number of SRIF receptors in the rat frontoparietal cortex

(Martı́nez and Arilla, 1993).

The decrease in the number of SRIF receptors in alcoholic virgin rats with respect to control virgin

rats (42%) was greater than that found in ethanol parturient group (25%) when compared with control

parturient rats. Although the mechanism is unknown, changes in protein kinase C and noradrenaline in

ethanol-tolerant rats may be involved. In this context, it should be noted that tolerance to ethanol was

observed in ethanol-treated virgin rats, but not in ethanol-treated parturient rats (Través and López-

Tejero, 1994). Chronic ethanol exposure upregulates delta and epsilon protein kinase C and this kinase

decreases SRIF binding (Matozaki et al., 1986). On the other hand, noradrenergic neurons have been

implicated in the development of ethanol tolerance and the development of a2-adrenoceptor

hyposensitivity has been postulated to occur during long-term exposure to ethanol (Verbanck et al.,

1991). We have previously demonstrated that the a2-adrenoceptor antagonist yohimbine decreases the

number of SRIF receptors (López-Sañudo and Arilla, 1994).

Levels of SRIF-LI are reduced in parturient rats. The mechanism of this reduction is unknown, but it

has been reported that norepinephrine and serotonin stimulate brain SRIF release and both

neurotransmitters rise after parturition, with a subsequent decrease of SRIF-LI levels in this period

(Desan et al., 1988). Chronic ethanol consumption restored SRIF-LI content in parturient rats. In this

context, it has been shown that estradiol levels are elevated in pregnant rats exposed to ethanol (Hilakivi-

Clarke et al., 2004) and this estrogen increases SRIF mRNA in the central nervous system (Pillon et al.,

2004). On the other hand, GABA inhibits SRIF release and GABA content is increased on the day of

delivery (Bonanno et al., 1999). Thus, SRIF release may be decreased, which would result in an increase

in SRIF levels. However, chronic ethanol ingestion in virgin rats had no effect on SRIF content when

compared with control virgin rats. These results are in agreement with our previous results in male rats

(Barrios et al., 1990). In vitro studies have demonstrated that chronic ethanol treatment has no direct

effect either on SRIF content or SRIF mRNA levels in neurons (Rage et al., 1998) and in vivo results

suggest that a much longer period of alcohol consumption is necessary to diminish brain SRIF content in

non-pregnant rats (Madeira et al., 1997).

Chronic ethanol ingestion decreased the capacity of SRIF to inhibit AC activity in virgin and

parturient rats. These results are in agreement with those obtained by Wenrich et al. (1998) in

ethanol-treated rats. In addition, the capacity of SRIF to inhibit AC activity in alcoholic virgin rats

was reduced to a greater extent than in alcoholic parturient rats when compared to their control

groups. This greater decrease may be related to the pronounced loss of SRIF receptors shown in this

group.



V. Barrios et al. / Life Sciences 77 (2005) 1094–1105 1103
In view of these results, we examined whether ethanol ingestion during gestation could alter the levels

of heterotrimeric guanine nucleotide-binding inhibitory proteins (Gi proteins). Chronic ethanol exposure

did not induce significant changes in Gi proteins. These results are in agreement with other authors.

Thus, long-term incubation of the NG 108-15 neuroblastoma glioma hybrid cell line with ethanol was

not associated with any change in Gia-proteins (Charness et al., 1988). In addition, in vivo studies on

chronic ethanol consumption demonstrated no changes in Gi proteins in the cerebral cortex (Tabakoff et

al., 1995).

Here we show that ethanol has less effect on the frontoparietal cortical SRIFergic system and AC

activity of gestational rats than that of virgin rats. In fact, ethanol has been demonstrated to induce a

dose-dependent increase in lipid peroxidation in brain homogenates (Montoliu et al., 1994) and

gestation to confer temporary resistance to peroxidation in the maternal rat brain (Subramanian et al.,

1993). This protective effect of gestation could be responsible for the decreased toxic effects of

ethanol on brain membrane alterations observed after chronic ethanol intake. Therefore, it is possible

that ethanol has less effect on the SRIFergic receptor-effector system, at least in part, due to this

resistance to peroxidation.

In summary, the present results suggest that gestation seems to confer partial resistance to the ethanol-

induced effect on the SRIFergic receptor-effector system in the rat frontoparietal cortex.
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