4 research outputs found

    The SARS-CoV-2 Spike Glycoprotein Directly Binds Exogeneous Sialic Acids: A NMR View

    Get PDF
    [EN] The interaction of the SARS CoV2 spike glycoprotein with two sialic acid-containing trisaccharides (alpha 2,3 and alpha 2,6 sialyl N-acetyllactosamine) has been demonstrated by NMR. The NMR-based distinction between the signals of those sialic acids in the glycans covalently attached to the spike protein and those belonging to the exogenous alpha 2,3 and alpha 2,6 sialyl N-acetyllactosamine ligands has been achieved by synthesizing uniformly C-13-labelled trisaccharides at the sialic acid and galactose moieties. STD-H-1,C-13-HSQC NMR experiments elegantly demonstrate the direct interaction of the sialic acid residues of both trisaccharides with additional participation of the galactose moieties, especially for the alpha 2,3-linked analogue. Additional experiments with the spike protein in the presence of a specific antibody for the N-terminal domain and with the isolated receptor binding and N-terminal domains of the spike protein unambiguously show that the sialic acid binding site is located at the N-terminal domain.This research was funded by the European Research Council (ERC-2017-AdG, project number 788143-RECGLYCA NMR to J.J.B.) and Agencia Estatal de Investigacion (Spain), projects RTI2018-094751-B-C21 to J.J.B. & A.A. and PID2019-107770RA-I00 to J.E.O., and by the Human Frontier Science Program (HFSP; grant LT000747/2018-C to L.U.) and CIBER, an initiative of Instituto de Salud Carlos III (ISCIII), Madrid, Spai

    Structural insights into Siglec-15 reveal glycosylation dependency for its interaction with T cells through integrin CD11b

    Get PDF
    Funding Information: This work was supported by the European Research Council (ERC-2017-AdG, 788143-RECGLYCANMR to J.J.-B; ERC-2018-StG 804236-NEXTGEN-IO to A.P.) and the Marie-Skłodowska-Curie actions (ITN Glytunes grant agreement No 956758 to K.S.; ITN BactiVax under grant agreement no. 860325 to U.A. and ITN DIRNANO grant agreement No 956544 to F.C.). X-ray diffraction experiments described in this paper were performed using beamlines XALOC synchrotron at ALBA (Spain) and PXIII in Swiss Light Source (Switzerland). F.M., C.S. and H.C. acknowledge Fundação para a Ciência e a Tecnologia (FCT-Portugal) for funding projects: PTDC/BIA-MIB/31028/2017 and UCIBIO project (UIDP/04378/2020 and UIDB/04378/2020) and Associate Laboratory Institute for Health and Bioeconomy—i4HB project (LA/P/0140/2020), to the CEEC contracts 2020.00233.CEECIND and 2020.03261.CEECIND for F.M. and H.C., respectively, and to PhD grant 2022.11723.BD of C.S. The NMR spectrometers are part of the National NMR Network (PTNMR) and are partially supported by Infrastructure Project No 22161 (co-financed by FEDER through COMPETE 2020, POCI and PORL and FCT through PIDDAC). F.M. and J.J.-B. acknowledge to the European funding for the GLYCOTwinning project (No. 101079417) and -COST Action GLYCONANOPROBES. A.P.’s research is funded by “La Caixa” Foundation (HR21-00925), AECC (LABAE211744PALA), Fundación FERO, Ikerbasque, and BIOEF EITB MARATOIA BIO19/CP/002. We thank Agencia Estatal de Investigación of Spain for grants PID2019-107956RA-I00 (A.P.), PID2019-107770RA-I00 (J.E.-O.), RTI2018-099592-B-C21 (F.C.), ID2020-114178GB (R.B. and J.D.S.), RYC2018-024183-I (A.P.), and the Severo Ochoa Center of Excellence Accreditation CEX2021-001136-S, all funded by MCIN/AEI/10.13039/501100011033 and by El FSE invierte en tu futuro, as well as CIBERES, and initiative of Instituto de Salud Carlos III (ISCIII, Spain) A.A.-V. receives funding from “La Caixa” Foundation (ID 100010434, LCF/BQ/DR20/11790022). A. B. (AECC Bizkaia Scientific Foundation, PRDVZ19003BOSC). F.C. acknowledges the Mizutani Foundation for Glycoscience (Grant 220115). Funding Information: This work was supported by the European Research Council (ERC-2017-AdG, 788143-RECGLYCANMR to J.J.-B; ERC-2018-StG 804236-NEXTGEN-IO to A.P.) and the Marie-Skłodowska-Curie actions (ITN Glytunes grant agreement No 956758 to K.S.; ITN BactiVax under grant agreement no. 860325 to U.A. and ITN DIRNANO grant agreement No 956544 to F.C.). X-ray diffraction experiments described in this paper were performed using beamlines XALOC synchrotron at ALBA (Spain) and PXIII in Swiss Light Source (Switzerland). F.M., C.S. and H.C. acknowledge Fundação para a Ciência e a Tecnologia (FCT-Portugal) for funding projects: PTDC/BIA-MIB/31028/2017 and UCIBIO project (UIDP/04378/2020 and UIDB/04378/2020) and Associate Laboratory Institute for Health and Bioeconomy—i4HB project (LA/P/0140/2020), to the CEEC contracts 2020.00233.CEECIND and 2020.03261.CEECIND for F.M. and H.C., respectively, and to PhD grant 2022.11723.BD of C.S. The NMR spectrometers are part of the National NMR Network (PTNMR) and are partially supported by Infrastructure Project No 22161 (co-financed by FEDER through COMPETE 2020, POCI and PORL and FCT through PIDDAC). F.M. and J.J.-B. acknowledge to the European funding for the GLYCOTwinning project (No. 101079417) and -COST Action GLYCONANOPROBES. A.P.’s research is funded by “La Caixa” Foundation (HR21-00925), AECC (LABAE211744PALA), Fundación FERO, Ikerbasque, and BIOEF EITB MARATOIA BIO19/CP/002. We thank Agencia Estatal de Investigación of Spain for grants PID2019-107956RA-I00 (A.P.), PID2019-107770RA-I00 (J.E.-O.), RTI2018-099592-B-C21 (F.C.), ID2020-114178GB (R.B. and J.D.S.), RYC2018-024183-I (A.P.), and the Severo Ochoa Center of Excellence Accreditation CEX2021-001136-S, all funded by MCIN/AEI/10.13039/501100011033 and by El FSE invierte en tu futuro, as well as CIBERES, and initiative of Instituto de Salud Carlos III (ISCIII, Spain) A.A.-V. receives funding from “La Caixa” Foundation (ID 100010434, LCF/BQ/DR20/11790022). A. B. (AECC Bizkaia Scientific Foundation, PRDVZ19003BOSC). F.C. acknowledges the Mizutani Foundation for Glycoscience (Grant 220115). Publisher Copyright: © 2023, The Author(s).Sialic acid-binding Ig-like lectin 15 (Siglec-15) is an immune modulator and emerging cancer immunotherapy target. However, limited understanding of its structure and mechanism of action restrains the development of drug candidates that unleash its full therapeutic potential. In this study, we elucidate the crystal structure of Siglec-15 and its binding epitope via co-crystallization with an anti-Siglec-15 blocking antibody. Using saturation transfer-difference nuclear magnetic resonance (STD-NMR) spectroscopy and molecular dynamics simulations, we reveal Siglec-15 binding mode to α(2,3)- and α(2,6)-linked sialic acids and the cancer-associated sialyl-Tn (STn) glycoform. We demonstrate that binding of Siglec-15 to T cells, which lack STn expression, depends on the presence of α(2,3)- and α(2,6)-linked sialoglycans. Furthermore, we identify the leukocyte integrin CD11b as a Siglec-15 binding partner on human T cells. Collectively, our findings provide an integrated understanding of the structural features of Siglec-15 and emphasize glycosylation as a crucial factor in controlling T cell responses.publishersversionpublishe

    Current Status on Therapeutic Molecules Targeting Siglec Receptors

    No full text
    The sialic acid-binding immunoglobulin-type of lectins (Siglecs) are receptors that recognize sialic acid-containing glycans. In the majority of the cases, Siglecs are expressed on immune cells and play a critical role in regulating immune cell signaling. Over the years, it has been shown that the sialic acid-Siglec axis participates in immunological homeostasis, and that any imbalance can trigger different pathologies, such as autoimmune diseases or cancer. For all this, different therapeutics have been developed that bind to Siglecs, either based on antibodies or being smaller molecules. In this review, we briefly introduce the Siglec family and we compile a description of glycan-based molecules and antibody-based therapies (including CAR-T and bispecific antibodies) that have been designed to therapeutically targeting Siglecs
    corecore