6 research outputs found

    El reto de la inclusión de los Objetivos de Desarrollo Sostenible en la formación inicial de profesores de secundaria: creación del MOOC curso cero sobre educación y ODS, inclusión en asignaturas y en trabajos fin de máster

    Get PDF
    Memoria ID-041. Ayudas de la Universidad de Salamanca para la innovación docente, curso 2021-2022

    Diatom-based paleoproductivity and climate change record of the Gulf of Tehuantepec (Eastern Tropical Pacific) during the last ~500 years

    No full text
    International audienceChanges in marine productivity of the last five centuries in the Gulf of Tehuantepec were investigated using a high-resolution record of diatoms, organic carbon (C org ), total nitrogen (TN), Ni/Al, and Cu/Al. The laminated sediments were dated by using 210 Pb and 14 C, with a bayesian age model providing a new Δ R = 247 ± 30 years for the bulk sediment. The Little Ice Age (LIA) (~1500 to ~1858 CE) was characterized by the predominance of cold-water and high productivity diatoms ( Chaetoceros spores, Thalassionema nitzschioides, Lioloma pacificum, Thalassiosira nanolineata, and Rhizossolenia setigera) and high values of geochemical productivity proxies. A transition period (~1860 to ~1919 CE) toward warmer conditions related to the end of the LIA and the beginning of the Current Warm Period (CWP), was indicated by the appearance of warm-water diatoms ( Neodelphineis pelagica, Thalassiosira tenera, and Rhizossolenia bergonii), as well as lower values of C org , TN, Ni/Al, and Cu/Al. The most recent period of the CWP (~1920 CE to today) was characterized by the increased abundance warm-water taxa ( N. pelagica, Cymatodiscus planetophorus, T. tenera, Plagiogramma minus, Nitzschia interruptestriata, and R. bergonii), and by the prevalence of low values of C org , TN, Ni/Al, and Cu/Al. These changes in productivity during the LIA and CWP were likely driven by changes in solar irradiance and the migration of the Intertropical Convergence Zone. This study highlights the spatial extent of the LIA in the Eastern Tropical North Pacific and contributes to the knowledge of the productivity response to climate in tropical regions

    Advanced Optical Microscopy: Unveiling Functional Insights Regarding a Novel <i>PPP2R1A</i> Variant and Its Unreported Phenotype

    No full text
    The number of genes implicated in neurodevelopmental conditions is rapidly growing. Recently, variants in PPP2R1A have been associated with syndromic intellectual disability and a consistent, but still expanding, phenotype. The PPP2R1A gene encodes a protein subunit of the serine/threonine protein phosphatase 2A enzyme, which plays a critical role in cellular function. We report an individual showing pontocerebellar hypoplasia (PCH), microcephaly, optic and peripheral nerve abnormalities, and an absence of typical features like epilepsy and an abnormal corpus callosum. He bears an unreported variant in an atypical region of PPP2R1A. In silico studies, functional analysis using immunofluorescence, and super-resolution microscopy techniques were performed to investigate the pathogenicity of the variant. This analysis involved a comparative analysis of the patient’s fibroblasts with both healthy control cells and cells from an individual with the previously described phenotype. The results showed reduced expression of PPP2R1A and the presence of aberrant protein aggregates in the patient’s fibroblasts, supporting the pathogenicity of the variant. These findings suggest a potential association between PPP2R1A variants and PCH, expanding the clinical spectrum of PPP2R1A-related neurodevelopmental disorder. Further studies and descriptions of additional patients are needed to fully understand the genotype–phenotype correlation and the underlying mechanisms of this novel phenotype

    Pseudomonas aeruginosa antibiotic susceptibility profiles, genomic epidemiology and resistance mechanisms: a nation-wide five-year time lapse analysisResearch in context

    No full text
    Summary: Background: Pseudomonas aeruginosa healthcare-associated infections are one of the top antimicrobial resistance threats world-wide. In order to analyze the current trends, we performed a Spanish nation-wide high-resolution analysis of the susceptibility profiles, the genomic epidemiology and the resistome of P. aeruginosa over a five-year time lapse. Methods: A total of 3.180 nonduplicated P. aeruginosa clinical isolates from two Spanish nation-wide surveys performed in October 2017 and 2022 were analyzed. MICs of 13 antipseudomonals were determined by ISO-EUCAST. Multidrug resistance (MDR)/extensively drug resistance (XDR)/difficult to treat resistance (DTR)/pandrug resistance (PDR) profiles were defined following established criteria. All XDR/DTR isolates were subjected to whole genome sequencing (WGS). Findings: A decrease in resistance to all tested antibiotics, including older and newer antimicrobials, was observed in 2022 vs 2017. Likewise, a major reduction of XDR (15.2% vs 5.9%) and DTR (4.2 vs 2.1%) profiles was evidenced, and even more patent among ICU isolates [XDR (26.0% vs 6.0%) and DTR (8.9% vs 2.6%)] (p < 0.001). The prevalence of Extended-spectrum β-lactamase/carbapenemase production was slightly lower in 2022 (2.1%. vs 3.1%, p = 0.064). However, there was a significant increase in the proportion of carbapenemase production among carbapenem-resistant strains (29.4% vs 18.1%, p = 0.0246). While ST175 was still the most frequent clone among XDR, a slight reduction in its prevalence was noted (35.9% vs 45.5%, p = 0.106) as opposed to ST235 which increased significantly (24.3% vs 12.3%, p = 0.0062). Interpretation: While the generalized decrease in P. aeruginosa resistance, linked to a major reduction in the prevalence of XDR strains, is encouraging, the negative counterpart is the increase in the proportion of XDR strains producing carbapenemases, associated to the significant advance of the concerning world-wide disseminated hypervirulent high-risk clone ST235. Continued high-resolution surveillance, integrating phenotypic and genomic data, is necessary for understanding resistance trends and analyzing the impact of national plans on antimicrobial resistance. Funding: MSD and the Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea—NextGenerationEU
    corecore