7 research outputs found

    Hardening effect of diffusible hydrogen on BCC Fe-based model alloys by in situ backside hydrogen charging

    Get PDF
    Hydrogen embrittlement is common in metallic materials and a critical issue in industries involving hydrogen-related processes. Here we investigate the mechanical response upon hydrogen loading of ferritic Fe-16Cr, Fe-21Cr and Fe-4Al alloys. We use a novel in situ setup for electrochemical backside hydrogen charging during nanoindentation. Single-phase ferritic Fe-Cr binary alloys with high hydrogen diffusivity and low solubility, are ideal for in situ studies during hydrogen charging, particularly the effect of diffusible and lightly trapped hydrogen is targeted. The hardness increases linearly with increasing hydrogen content until a quasi-equilibrium state between hydrogen absorption and desorption is reached while Young\u27s modulus remains unaffected. Above this transient region, the slope of the absolute hardness experiences a drastic decrease. The hardness variation in Fe-21Cr is anisotropic as determined for (1 0 0), (1 1 0) and (1 1 1) oriented grains. Increasing the Cr content enhances the hardening effect in (1 0 0) orientation: a 16.7 % hardness increase is observed in Fe-21Cr, while Fe-16Cr, shows an increment of 10.8 %. A Fe-4Al alloy increases slightly in hardness by only 4.3 % at the applied current density of 3 mA/cm2^2. The hardening effect is caused by enhancing dislocation density, as revealed by studying the cross-section underneath the nanoindentation imprints

    Direct observation of dislocation plasticity in FeCrCoMnNi high-entropy alloys

    Get PDF
    In the past decade, high-entropy alloys (HEAs) have been intensively investigated not only because of fundamental scientific interests, but also their outstanding mechanical properties, for example, high ductility and fracture toughness. Among hundreds of different combinations of principal elements, the equiatomic FeCrCoMnNi alloy, the so-called Cantor alloy, has been studied as a model system, which is a single phase material with face-centered cubic (FCC) structure at room temperature and shows outstanding ductility and strain hardening especially at cryogenic temperatures. However, dislocation-based deformation mechanisms of HEAs remain elusive and require a fundamental understanding in order to tailor their mechanical properties. Several models have been suggested possible strengthening mechanisms of HEAs, for instance, the high entropy effect and the lattice distortion effect. In the case of the Cantor alloy, the main strengthening mechanism was identified as deformation twinning with critical twinning stress of 720 MPa. At room temperature, dislocation slip by full dislocations is dominant, however, at strains exceeding 20 % and high flow stresses, deformation twinning was also observed. To reveal the hardening mechanism in more detail, direct observation of dislocation plasticity and deformation dynamics is required. Here, we present a study correlating the microstructure and dislocation plasticity of a single crystalline FeCrCoMnNi FCC single phase HEA by employing in-situ transmission electron microscope (TEM) compression and tensile deformation. Moreover, an atomic-scale chemical analysis is conducted by aberration-corrected scanning TEM energy dispersive X-ray spectroscopy (STEM-EDS) and atom probe tomography to investigate chemical inhomogeneity, for example, precipitate formation or local inhomogeneity. Compression tests with sub-micron pillars with 250 and 120 nm diameter show less pronounced mechanical size effects in the alloy compared to other FCC metals as the size exponent is measured as 0.53. It suggests that relatively strong inherent hardening processes are present which attenuate the FCC reported size scaling exponent, which is typically 0.6 to 1.0 for pure FCC metals. The elemental distribution and lattice strains at the atomic scale are rather uniform without long-range ordering analyzed by high-resolution scanning TEM (STEM) and atom probe tomography. Finally, dislocation glide motion was directly observed during in situ TEM tensile tests. The local shear stress measured from gliding of individual dislocations is exceeding 400 MPa. Kink-pair-like glide behavior and periodic fluctuation in the stacking fault width suggest that local pinning points, severe lattice distortion or short-range ordering hinder dislocation motion in HEAs

    Actualidad y prospectiva de la investigación científica en el Centro Universitario Amecameca de la Universidad Autónoma del Estado de México

    Get PDF
    Con responsabilidad, se organizó un programa cuya finalidad fuera publicitar con transparencia dichos avances, a través de un esfuerzo de rendición de cuentas a la comunidad inmediata, la universitaria, y a la comunidad abierta, la sociedad que la principal referencia para tal efecto. El programa se concretiza a través del presente libro, conformado con una inspiración de investigación multidisciplinaria; sin embargo, para llegar a tal fin, el reto es realizar el proceso de búsqueda y generación de conocimiento transitando hacia la colaboración de los cuerpos académicos, que puedan construir nuevos conocimientos fortalecidos por la convergencia de diferentes campos del saber. En consecuencia, la primera etapa de esta estrategia es la publicidad de los trabajos investigativos ejercidos, para hacer un balance al día, pero también proyectar el futuro de cada campo y área del conocimiento. La organización explicativa está organizada por tres bloques representativos del quehacer en la generación de conocimiento del Centro Universitario, un primer bloque centra el interés en las humanidades, educación y sustentabilidad; el segundo bloque lo integra la reflexión científica sobre la construcción democrática, derechos humanos y equidad de género; en el tercer segmento se destina a la seguridad alimentaria, salud pública y sistemas agropecuarios. La actualidad de la investigación eleva la producción lograda y lo que en el momento se encuentra en construcción y los alcances que produce para la docencia, la investigación misma, y para la sociedad en general. La prospectiva es un área que todos los capítulos desarrollan con el propósito de delinear los alcances innovadores por andar en teoría, metodología e incluso en los saberes mismo

    Hardening effect of diffusible hydrogen on BCC Fe-based model alloys by in situ backside hydrogen charging

    No full text
    Hydrogen embrittlement is common in metallic materials and a critical issue in industries involving hydrogen-related processes. Here we investigate the mechanical response upon hydrogen loading of ferritic Fe-16Cr, Fe-21Cr and Fe-4Al alloys. We use a novel in situ setup for electrochemical backside hydrogen charging during nanoindentation. Single-phase ferritic Fe-Cr binary alloys with high hydrogen diffusivity and low solubility, are ideal for in situ studies during hydrogen charging, particularly the effect of diffusible and lightly trapped hydrogen is targeted. The hardness increases linearly with increasing hydrogen content until a quasi-equilibrium state between hydrogen absorption and desorption is reached while Young's modulus remains unaffected. Above this transient region, the slope of the absolute hardness experiences a drastic decrease. The hardness variation in Fe-21Cr is anisotropic as determined for (100), (110) and (111) oriented grains. Increasing the Cr content enhances the hardening effect in (100) orientation: a 16.7 % hardness increase is observed in Fe-21Cr, while Fe-16Cr, shows an increment of 10.8 %. A Fe-4Al alloy increases slightly in hardness by only 4.3 % at the applied current density of 3 mA/cm2. The hardening effect is caused by enhancing dislocation density, as revealed by studying the cross-section underneath the nanoindentation imprints

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)

    Global economic burden of unmet surgical need for appendicitis

    No full text
    Background There is a substantial gap in provision of adequate surgical care in many low- and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially
    corecore