38 research outputs found
Artificial infiltration in drinking water production: Addressing chemical hazards using effect-based methods
Artificial infiltration is an established managed aquifer recharge method that is commonly incorporated into drinking water processes. However, groundwater sourced from this type of purification method is prone to contamination with chemical hazards. Such an instance was previously shown at a Swedish DWTP where the river water was contaminated by hazardous chemicals during artificial infiltration. Further, there remains a paucity of research studying the quality of drinking water following this type of treatment from an effect-based bioanalytical perspective. In the current study, an effect-based assessment for chemical hazards was conducted for a Swedish drinking water system comprised of two DWTPs fed artificially-infiltrated river water. In this system, artificial infiltration of the river water takes approximately six to eight months. A sampling event was conducted in the autumn season and the samples were enriched by solid phase extraction. A panel of cell-based reporter gene assays representing several toxicity pathways was selected: oxidative stress response (Nrf2 activity), aryl hydrocarbon receptor (AhR) activation, and hormone receptor-mediated effects (estrogen receptor [ER], androgen receptor [AR]). AhR and ER bioactivities were detected in samples collected from the river intake and in the open-air infiltration basins prior to artificial infiltration. However, the AhR activity decreased and ER activity was effectively removed following artificial infiltration. In the Nrf2 and AR assays, no bioactivities above cut-off levels were detected in any samples collected along the entire treatment process of the drinking water production from source to tap. Using a suite of bioassays, the current study highlighted the effectiveness of artificial infiltration in reducing bioactive compounds in this raw river water. Although artificial infiltration is a common purification method in drinking water production, the limited number of effect-based studies evaluating the effectiveness of this method emphasizes the need for further research to better understand the risks and benefits of this water treatment process
Combination Therapy with Radiation and PARP Inhibition Enhances Responsiveness to Anti-PD-1 Therapy in Colorectal Tumor Models.
PURPOSE: The majority of colorectal cancers are resistant to cancer immune checkpoint inhibitors. Ionizing radiation (IR) and several radiosensitizers, including PARP inhibitors, can enhance responsiveness to immune checkpoint inhibitors by potentially complementary mechanisms of action. We assessed the ability of radiation and PARP inhibition to induce proimmunogenic changes in tumor cells and enhance their in vivo responsiveness to anti-PD-1 antibodies. METHODS AND MATERIALS: We performed a candidate drug screen and used flow cytometry to assess effects of the PARP inhibitor veliparib on IR-mediated changes in MHC-1 antigen presentation and surface localization of immune-modulating proteins including PD-L1 and calreticulin in colorectal cancer tumor models. Reverse transcription polymerase chain reaction was used to assess the effects of veliparib and radiation on the expression of proinflammatory and immunosuppressive cytokines. The ability of concurrent PARP inhibition and subablative doses of radiation therapy to enhance in vivo responsiveness to anti-PD-1 antibodies was assessed using unilateral flank-tumor models with or without T-cell depletion. RESULTS: Veliparib was a potent radiosensitizer in both cell lines. Radiation increased surface localization of MHC-1 and PD-L1 in a dose-dependent manner, and veliparib pretreatment significantly enhanced these effects with high (8 Gy) but not with lower radiation doses. Enhancement of MHC-1 and PD-L1 surface localization by IR and IR+ veliparib remained significant 1, 3, and 7 days after treatment. IR significantly increased delayed tumoral expression of proinflammatory cytokines interferon-Ƴ and CXCL10 but had no significant effect on the expression of IL-6 or TGF-β. Concurrent administration of veliparib and subablative radiation therapy (8 Gy × 2) significantly prolonged anti-PD-1-mediated in vivo tumor growth delay and survival in both tumor models. Moreover, these effects were more pronounced in the microsatellite instability-mutated MC38 tumor model. Enhancement of anti-PD-1 mediated tumor growth delay with veliparib and IR was attenuated by CD8+ T-cell depletion. CONCLUSIONS: We provide preclinical evidence for a novel therapeutic strategy to enhance responsiveness of colorectal tumors to immune checkpoint inhibitors
Mitochondrial Superoxide Dismutase in Cisplatin-Induced Kidney Injury
Cisplatin is a chemotherapy agent commonly used to treat a wide variety of cancers. Despite the potential for both severe acute and chronic side effects, it remains a preferred therapeutic option for many malignancies due to its potent anti-tumor activity. Common cisplatin-associated side-effects include acute kidney injury (AKI) and chronic kidney disease (CKD). These renal injuries may cause delays and potentially cessation of cisplatin therapy and have long-term effects on renal function reserve. Thus, developing mechanism-based interventional strategies that minimize cisplatin-associated kidney injury without reducing efficacy would be of great benefit. In addition to its action of cross-linking DNA, cisplatin has been shown to affect mitochondrial metabolism, resulting in mitochondrially derived reactive oxygen species (ROS). Increased ROS formation in renal proximal convoluted tubule cells is associated with cisplatin-induced AKI and CKD. We review the mechanisms by which cisplatin may induce AKI and CKD and discuss the potential of mitochondrial superoxide dismutase mimetics to prevent platinum-associated nephrotoxicity
Redox Regulation of Nrf2 in Cisplatin-Induced Kidney Injury
Cisplatin, a potent chemotherapeutic agent, is marred by severe nephrotoxicity that is governed by mechanisms involving oxidative stress, inflammation, and apoptosis pathways. The transcription factor Nrf2, pivotal in cellular defense against oxidative stress and inflammation, is the master regulator of the antioxidant response, upregulating antioxidants and cytoprotective genes under oxidative stress. This review discusses the mechanisms underlying chemotherapy-induced kidney injury, focusing on the role of Nrf2 in cancer therapy and its redox regulation in cisplatin-induced kidney injury. We also explore Nrf2's signaling pathways, post-translational modifications, and its involvement in autophagy, as well as examine redox-based strategies for modulating Nrf2 in cisplatin-induced kidney injury while considering the limitations and potential off-target effects of Nrf2 modulation. Understanding the redox regulation of Nrf2 in cisplatin-induced kidney injury holds significant promise for developing novel therapeutic interventions. This knowledge could provide valuable insights into potential strategies for mitigating the nephrotoxicity associated with cisplatin, ultimately enhancing the safety and efficacy of cancer treatment
Redox active metals and H2O2 mediate the increased efficacy of pharmacological ascorbate in combination with gemcitabine or radiation in pre-clinical sarcoma models
Soft tissue sarcomas are a histologically heterogeneous group of rare mesenchymal cancers for which treatment options leading to increased overall survival have not improved in over two decades. The current study shows that pharmacological ascorbate (systemic high dose vitamin C achieving ⥠20 mM plasma levels) is a potentially efficacious and easily integrable addition to current standard of care treatment strategies in preclinical models of fibrosarcoma and liposarcoma both in vitro and in vivo. Furthermore, enhanced ascorbate-mediated toxicity and DNA damage in these sarcoma models were found to be dependent upon H2O2 and intracellular labile iron. Together, these data support the hypothesis that pharmacological ascorbate may represent an easily implementable and non-toxic addition to conventional sarcoma therapies based on taking advantage of fundamental differences in cancer cell oxidative metabolism. Keywords: Sarcoma, Pharmacological ascorbate, Radiation sensitization, Chemotherapy sensitization, Labile iro
Quantitative MRI Evaluation of Ferritin Overexpression in Non-Small-Cell Lung Cancer
Cancer cells frequently present elevated intracellular iron levels, which are thought to facilitate an enhanced proliferative capacity. Targeting iron metabolism within cancer cells presents an avenue to enhance therapeutic responses, necessitating the use of non-invasive models to modulate iron manipulation to predict responses. Moreover, the ubiquitous nature of iron necessitates the development of unique, non-invasive markers of metabolic disruptions to develop more personalized approaches and enhance the clinical utility of these approaches. Ferritin, an iron storage enzyme that is often upregulated as a response to iron accumulation, plays a central role in iron metabolism and has been frequently associated with unfavorable clinical outcomes in cancer. Herein, we demonstrate the successful utility, validation, and functionality of a doxycycline-inducible ferritin heavy chain (FtH) overexpression model in H1299T non-small-cell lung cancer (NSCLC) cells. Treatment with doxycycline increased the protein expression of FtH with a corresponding decrease in labile iron in vitro and in vivo, as determined by calcein-AM staining and EPR, respectively. Moreover, a subsequent increase in TfR expression was observed. Furthermore, T2* MR mapping effectively detected FtH expression in our in vivo model. These results demonstrate that T2* relaxation times can be used to monitor changes in FtH expression in tumors with bidirectional correlations depending on the model system. Overall, this study describes the development of an FtH overexpression NSCLC model and its correlation with T2* mapping for potential use in patients to interrogate iron metabolic alterations and predict clinical outcomes