2,917 research outputs found

    Ultraluminous X-ray Sources forming in low metallicity natal environments

    Get PDF
    In the last few years multiwavelength observations have boosted our understanding of Ultraluminous X-ray Sources (ULXs). Yet, the most fundamental questions on ULXs still remain to be definitively answered: do they contain stellar or intermediate mass black holes? How do they form? We investigate the possibility that the black holes hosted in ULXs originate from massive (40-120 M⊙M_\odot) stars in low metallicity natal environments. Such black holes have a typical mass in the range ∼30−90M⊙\sim 30-90 M_\odot and may account for the properties of bright (above ∼1040\sim 10^{40} erg s−1^{-1}) ULXs. More than ∼105\sim 10^5 massive black holes might have been generated in this way in the metal poor Cartwheel galaxy during the last 10710^7 years and might power most of the ULXs observed in it. Support to our interpretation comes from NGC 1313 X-2, the first ULX with a tentative identification of the orbital period in the optical band, for which binary evolution calculations show that the system is most likely made by a massive donor dumping matter on a 50−100M⊙50-100 M_\odot black hole.Comment: 4 pages. To appear in the Proceedings of the Conference "X-Ray Astronomy 2009: Present Status, Multiwavelength Approach and Future Perspectives", Bologna, Italy, September 2009, Eds. A. Comastri, M. Cappi, L. Angelini, 2010 AIP (in press)

    Discovery of a 6.4 h black hole binary in NGC 4490

    Full text link
    We report on the discovery with Chandra of a strong modulation (~90% pulsed fraction) at ~6.4 h from the source CXOU J123030.3+413853 in the star-forming, low-metallicity spiral galaxy NGC 4490, which is interacting with the irregular companion NGC 4485. This modulation, confirmed also by XMM-Newton observations, is interpreted as the orbital period of a binary system. The spectra from the Chandra and XMM-Newton observations can be described by a power-law model with photon index ~1.5. During these observations, which span from 2000 November to 2008 May, the source showed a long-term luminosity variability by a factor of ~5, between ~2E+38 and 1.1E+39 erg/s (for a distance of 8 Mpc). The maximum X-ray luminosity, exceeding by far the Eddington limit of a neutron star, indicates that the accretor is a black hole. Given the high X-ray luminosity, the short orbital period and the morphology of the orbital light curve, we favour an interpretation of CXOU J123030.3+413853 as a rare high-mass X-ray binary system with a Wolf-Rayet star as a donor, similar to Cyg X-3. This would be the fourth system of this kind known in the local Universe. CXOU J123030.3+413853 can also be considered as a transitional object between high mass X-ray binaries and ultraluminous X-ray sources (ULXs), the study of which may reveal how the properties of persistent black-hole binaries evolve entering the ULX regime.Comment: Fig. 1 in reduced quality; minor changes to match the MNRAS versio

    Dispersal and population structure at different spatial scales in the subterranean rodent Ctenomys australis

    Get PDF
    This study was funded by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP5838), Agencia de Promoción Científica y Tecnológica de la Argentina (PICTO1-423, BID-1728/OC-AR), and the programme ECOS-Sud France/Argentina (A05B01).Background: The population genetic structure of subterranean rodent species is strongly affected by demographic (e.g. rates of dispersal and social structure) and stochastic factors (e.g. random genetic drift among subpopulations and habitat fragmentation). In particular, gene flow estimates at different spatial scales are essential to understand genetic differentiation among populations of a species living in a highly fragmented landscape. Ctenomys australis (the sand dune tuco-tuco) is a territorial subterranean rodent that inhabits a relatively secure, permanently sealed burrow system, occurring in sand dune habitats on the coastal landscape in the south-east of Buenos Aires province, Argentina. Currently, this habitat is threatened by urban development and forestry and, therefore, the survival of this endemic species is at risk. Here, we assess population genetic structure and patterns of dispersal among individuals of this species at different spatial scales using 8 polymorphic microsatellite loci. Furthermore, we evaluate the relative importance of sex and habitat configuration in modulating the dispersal patterns at these geographical scales. Results: Our results show that dispersal in C. australis is not restricted at regional spatial scales (similar to 4 km). Assignment tests revealed significant population substructure within the study area, providing support for the presence of two subpopulations from three original sampling sites. Finally, male-biased dispersal was found in the Western side of our study area, but in the Eastern side no apparent philopatric pattern was found, suggesting that in a more continuous habitat males might move longer distances than females. Conclusions: Overall, the assignment-based approaches were able to detect population substructure at fine geographical scales. Additionally, the maintenance of a significant genetic structure at regional (similar to 4 km) and small (less than 1 km) spatial scales despite apparently moderate to high levels of gene flow between local sampling sites could not be explained simply by the linear distance among them. On the whole, our results support the hypothesis that males disperse more frequently than females; however they do not provide support for strict philopatry within females.Publisher PDFPeer reviewe

    Probing the presence of a single or binary black hole in the globular cluster NGC 6752 with pulsar dynamics

    Full text link
    The five millisecond pulsars that inhabit NGC 6752 display locations or accelerations that are quite unusual compared to all other pulsars known in globular clusters. In particular PSR-A, a binary pulsar, lives in the cluster halo, while PSR-B and PSR-E, located in the core, show remarkably high negative spin derivatives. This is suggestive that some uncommon dynamical process is at play in the cluster core that we attribute to the presence of a massive perturber. We here investigate whether a single intermediate-mass black hole, lying on the extrapolation of the Mass versus Sigma relation observed in galaxy spheroids, or a less massive binary consisting of two black holes could play the requested role. To this purpose we simulated binary-binary encounters involving PSR-A, its companion star, and the black hole(s). Various scenarios are discussed in detail. In our close 4-body encounters, a black hole-black hole binary may attract on a long-term stable orbit a millisecond pulsar. Timing measurements on the captured satellite-pulsar, member of a hierarchical triplet, could unambiguously unveil the presence of a black hole(s) in the core of a globular cluster.Comment: 13 pages, 8 figures, Accepted for publication in The Astrophysical Journa

    Applications of CORBA in the ATLAS prototype DAQ

    Get PDF
    This paper presents the experience of using the Common Object Request Broker Architecture (CORBA) in the ATLAS prototype DAQ project. Many communication links in the DAQ system have been designed and implemented using the CORBA standard. A public domain package, called Inter-Language Unification (ILU) has been used to implement CORBA based communications between DAQ components in a local area network (LAN) of heterogeneous computers. The CORBA Naming Service provides the principal mechanism through which most clients of an ORE-based system locate objects that they intend to use. In our project, conventions are employed that meaningfully partition the name space of the Naming Service according to divisions in the DAQ system itself. The Inter Process Communication (IPC) package, implemented in C++ on the top of CORBA/ILU, incorporates this facility and hides the details of the naming schema is described. The development procedure and environment for remote database access using IPC is described. Various end-user interfaces have been implemented using the Java language that communicate with C++ servers via CORBA/ILU. To support such interfaces, a second implementation of IPC in Java has been developed. The design and implementation of such connections are described. An alternative CORBA implementation, ORBacus, has been evaluated and compared with ILU. (24 refs)

    A Panchromatic Study of the Globular Cluster NGC 1904. I: The Blue Straggler Population

    Full text link
    By combining high-resolution (HST-WFPC2) and wide-field ground based (2.2m ESO-WFI) and space (GALEX) observations, we have collected a multi-wavelength photometric data base (ranging from the far UV to the near infrared) of the galactic globular cluster NGC1904 (M79). The sample covers the entire cluster extension, from the very central regions up to the tidal radius. In the present paper such a data set is used to study the BSS population and its radial distribution. A total number of 39 bright (m218≤19.5m_{218}\le 19.5) BSS has been detected, and they have been found to be highly segregated in the cluster core. No significant upturn in the BSS frequency has been observed in the outskirts of NGC 1904, in contrast to other clusters (M 3, 47 Tuc, NGC 6752, M 5) studied with the same technique. Such evidences, coupled with the large radius of avoidance estimated for NGC 1904 (ravoid∼30r_{avoid}\sim 30 core radii), indicate that the vast majority of the cluster heavy stars (binaries) has already sunk to the core. Accordingly, extensive dynamical simulations suggest that BSS formed by mass transfer activity in primordial binaries evolving in isolation in the cluster outskirts represent only a negligible (0--10%) fraction of the overall population.Comment: ApJ accepte

    Evaporative CO2 cooling using microchannels etched in silicon for the future LHCb vertex detector

    Full text link
    The extreme radiation dose received by vertex detectors at the Large Hadron Collider dictates stringent requirements on their cooling systems. To be robust against radiation damage, sensors should be maintained below -20 degree C and at the same time, the considerable heat load generated in the readout chips and the sensors must be removed. Evaporative CO2 cooling using microchannels etched in a silicon plane in thermal contact with the readout chips is an attractive option. In this paper, we present the first results of microchannel prototypes with circulating, two-phase CO2 and compare them to simulations. We also discuss a practical design of upgraded VELO detector for the LHCb experiment employing this approach.Comment: 12 page

    Theta-frequency resonance at the cerebellum input stage improves spike timing on the millisecond time-scale

    Get PDF
    The neuronal circuits of the brain are thought to use resonance and oscillations to improve communication over specific frequency bands (Llinas, 1988; Buzsaki, 2006). However, the properties and mechanism of these phenomena in brain circuits remain largely unknown. Here we show that, at the cerebellum input stage, the granular layer (GRL) generates its maximum response at 5\u20137 Hz both in vivo following tactile sensory stimulation of the whisker pad and in acute slices following mossy fiber bundle stimulation. The spatial analysis of GRL activity performed using voltage-sensitive dye (VSD) imaging revealed 5\u20137 Hz resonance covering large GRL areas. In single granule cells, resonance appeared as a reorganization of output spike bursts on the millisecond time-scale, such that the first spike occurred earlier and with higher temporal precision and the probability of spike generation increased. Resonance was independent from circuit inhibition, as it persisted with little variation in the presence of the GABAA receptor blocker, gabazine. However, circuit inhibition reduced the resonance area more markedly at 7 Hz. Simulations with detailed computational models suggested that resonance depended on intrinsic granule cells ionic mechanisms: specifically, Kslow (M-like) and KA currents acted as resonators and the persistent Na current and NMDA current acted as amplifiers. This form of resonance may play an important role for enhancing coherent spike emission from the GRL when theta-frequency bursts are transmitted by the cerebral cortex and peripheral sensory structures during sensory-motor processing, cognition, and learning

    The OKS persistent in-memory object manager

    Get PDF
    • …
    corecore