
1958 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 45, NO. 4, AUGUST 1998

The OKS Persistent In-memory Object Manager

R. Jones', L. Mapelli', Yu. Ryabov2 and I. Soloviev1.3
CERN, European Laboratory for Particle Physics, Geneva 23, Switzerland, CH-1211

PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad district, Russia, 188350
on leave from the PNPI

Abstract
The OKs (Object Kernel Support) is a library to support a

simple, active persistent in-memory object manager. It is
suitable for applications which need to create persistent
structured information with fast access but do not require full
database functionality. It can be used as the frame of
configuration databases and real-time object managers for
Data Acquisition and Detector Control Systems in such fields
as setup, diagnostics and general configuration description.

OKS is based on an object model that supports objects,
classes, associations, methods, inheritance, polymorphism,
object identifiers, composite objects, integrity constraints,
schema evolution, data migration and active notification. OKS
stores the class definitions and their instances in portable
ASCII files. It provides query facilities, including indices
support. The OKS has a C++ API (Application Program
Interface) and includes Motif based GUI applications to
design class schema and to manipulate objects.

OKS has been developed on top of the Rogue Wave
Tools.h++ C++ class library [l].

I. INTRODUCTION
OKS was designed at the Information Technology

Department of Petersburg Nuclear Physics Institute. An
experience that has been received during design of knowledge
based system [2] and it's use [3] had shown that for new
generation physical system with a lot of configuration and
knowledge data, a true persistent object manager should be
used. Such manager must support data capable of describing
configuration and knowledge, satisfy soft real-time
requirements (1.e. high performance but without time
guarantees for transaction completion) and be available on
various operating systems for different C++ compilers.
Various shareware and commercial data persistent managers
(databases, object managers, including ORACLE relational
database management system [41, Quid object manager [51,
ITASCA distributed object database management system [6] ,
ODE in-memory object-oriented database management
syaem from ATBLT ell Labs [7] , YOODA objecc-oriented
database [SI and Rogue Wave Tools.h++ C++ persistent
objects [l]) were evaluated but no single system satisfied all
the requirements [9], [lo]. By this reason it was decided to
start a new project to create an object manager (called OKs)
capable of fulfilling our needs.

The work with OKS was stared in January, 1996 and the
first prototype was implemented in July, 1996. At that time
the ATLAS DAQ working group [111 at CERN found similar
needs for a persistence data manager to implement
configuration databases and OKS was adopted [121.

To satisfy extra requirements from the ATLAS prototype
DAQ [13] a second prototype of OKS was implemented that
supported multi-schema and multi-data files. Later missing
base data types (boolean and bit vectors), dynamic data
modification in case of schema changes, queries and a full
documentation set (User Guide, Tools Manual, Reference
Manual and a tutorial) were added to OKS.

This version of OKS was successfully tested in the
ATLAS DAQ prototype -1 environment on several platforms
(including Sun OS, Sun Solaris, HP-UX, Windows 95/NT,
Lynx OS for Power PC, etc.) and with prototypes of future
DAQ applications.

11. OKS DESCRIPTION
This section describes the object model used by OKS,

architecture, API and related tools.

A. OKs Object Model
The OKS includes the following entries.

e the basic entity is an object which can be named and
assigned a unique identity (object identifier),

0 objects with common properties and behavior are described
by one class,

e object properties are defined by the set of attributes and
relationships,

e methods to act on object properties (e.g. to implement
consistency constraints),

0 inheritance (multiple, Le. an OKS class can have more
than one superclass),

0 polymorphism (overloading of inherited object properties
in a child class),

e composite objects (i.e. an object built from dependent
child objects),

0 integrity constraints (Le. type and value restrictions on
attributes and relationships),
schema evolution (Le. allow modifications to the schema
as the application evolves),

successive versions of a schema),
active notification (execute a set of callbacks when a class
or instance is created/deleted/modified).
An example application using many of the above entries is

data migration (i e permit data to be accessed by

shown in section 111.

B. OKs Architecture
The OKS stores schema and data in separate (multiple)

files to simplify schema evolution, data migration and allow
partial loading of a database as required.

0018-9499/98$10.00 0 1998 IEEE

1959

The OKS kernel is responsible for loading database
schema and data files. It is possible to store dependent OKS
classes (e.g. from the same inheritance hierarchy) in different
schema files. The minimal portion of information stored in a
schema file is an OKS class. It is possible to store dependent
OKS objects (e.g. as part of a composite object) in different
data files. The minimal portion of information stored in a data
file is an OKS object. The schema and data files have a
portable ASCII format which can be used across different
platforms.

The OKS kernel keeps two lists of loaded schema files and
loaded data files and two hash tables of defined OKS classes
and their instances. A schema file contains a list of defined
OKS classes and a data file contains a list of defined OKS
objects. An OKS class contains lists of superclasses,
attributes, relationships, methods and a hash table of
instances. An instance of OKS class (Le. OKS object) has an
array of OKS data structures that can be of built-in types
(boolean, character, signedhnsigned short/long integer, float,
double, date, time, string, bit array), enumeration type, a
reference to an OKS object, or a list of them which are used to
store the values of instance attributes and relationships. The
in-memory relationships between the described classes are
represented below in Figure 1 using OMT notation:

....... : i i

....................

OKs OKs
Attribute Relationship Method

Figure 1; The schema of relationships between OKS classes

The OKS supports queries and indices. A query can be
created using the OKS API or read from an ASCII string. An
index provides faster access to objects and it can be created
for a single attribute of a class.

Since OKS is an in-memory object manager with an
emphasis on performance and portability rather that a full
ODBMS, the following facilities are not supported:

distributed access (other than provided by the file system),
e concurrent access control,
e failure recovery,

transaction management is limited to data saving
("commit") and reloading ("abort").
The size of an OKS database is limited to the size of the

operating cyctem virtual memory allocated to a single process

C. OKs API

can be categorized into three groups:
The OKS provides a C++ API. It is a library of classes that

e OKs Kernel class manipulates schema and data files, sets
notification callback functions for any change of a class or
an instance, manipulates classes and dumps contents of
OKS kernel.
OKs Schema group of classes manipulates OKS classes,
class attributes, relationships and methods, classes
hierarchy, instances of class and executes query.
OKs Data group of classes manipulates OKS objects and
sets a list of notification callback functions to change value
of attribute or relationship for any existing object.
An example using many of the API calls is presented in

section 111.

D. OKSTools
OKS tools use the OKS library. OKS editors allow the

graphical tabular manipulation of data and schema but do not
provide a diagrammatic representation of the schema layout.

I) OKs Data Editor
The OKS Data Editor provides an interactive Motif based

GUI to graphically manipulate objects stored in the OKS data
files. An object can be inspected and edited visually. The Data
Editor has a graphical query constructor. A view of the OKS
Data Editor GUI is shown in Figure 2:

Figure 2: The OKS Data editor with loaded schema file and two data
files, message log, OKS class and OKS object dialog boxes.

2) OKs Schema Editor
The OKS Schema Editor provides an interactive Motif

based GUI to create, browse and modify OKS schema
database files. It is the simplest way to define an OKS
database and does not require programming by hand. The
Schema Editor has a main window which presents information
about loaded database schemes and classes, a log window
which lists the load-time and run-time error and information
messages generated by the OKS kernel, schema windows with

1960

defined classes, class windows that describe class properties,
attribute windows, relationship windows and method

Figure 3:

E. OKs Query

supporting boolean binary comparator functions with
attributes, disjunction or conjunction of a number of queries,
and, or, not keywords and queries through relationships) that
retrieves objects based on selection criteria. An OKS query
can be created using the OKS API or read from an ASCII
string. OKS Data Editor can graphically create a query and
save it in string format. An example query created by the Data
Editor is shown in Figure 4 (it uses the database schema
presented in section 111):

windows. A of OKs Schema Editor GUI is shown in OKs provides a query language (using a lisp based syntax

Figure 3: The OKS Schema Editor with loaded schema file, message
log, OKS class and OKS relationship dialog boxes.

3) Tool to compare OKs schema files
The OKS schema files comparer (like UNIX diff)

identifies differences for attributes, relationships, methods,
superclasses and produces a list of all sub classes for differed
classes This is a useful tool when different database schemes
need to be combined.

4)
In a similar manner, the OKS data files comparer identifies

a list of differences for object's attributes, relationships and
produces a list of object composite parents for differed
objects.

5)
The OKS kernel dump prints the contents of a loaded OKS

kernel. This allows the manual offline checking of database
contents.

Tool to compare OKs data files

Tool to dump the contents of schema and data files

Figure 4: An example of OKS Data Editor constructor query dialog

The example query searches applications that are not
MRS-Sewer, and must be unique for a partition (Le. a
requested application has an association with a software object
that needs resources with at most one copy per partition). This
query can be written as an ASCII string;
(all

I and
("Name" "MRS-Server" !=)
('I SWOb j ec t I' all

("NeedsResources 'I all

)
("MaxCopyPerPartition" 1 =)

)
)

)

1961

111. USE OF OKS FOR ATLAS DAQ PROTOTYPE - 1
CONFIGURATION DATABASES

The DAQ Configuration Databases are one of the software
components of the ATLAS Trigger/DAQ software [14]. A
DAQ needs a large number of parameters to describe its
system architecture, hardware and software components,
operation modes and status.

A. Atlas DAQ Prototype -1 Configuration
Databases Requirements

The user requirements for the configuration databases are
defined in the ATLAS DAQ Back-End Software User
Requirements Document [151.

These requirements include support for the definition of
data schemes with user-defined types. An application must be
capable of accessing multiple schemes simultaneously. It must
be available on a variety of platforms (including UNIX,
Windows NT and real-time UNIX kernels such as Lynx OS)
with schemes and data portable between the various
architectures. The size of the data sets for configuration
information is in the megabyte range and is mostly read-only
during operation (but updated offline). In the case of real-time
kernels running on embedded processors it is important to
avoid the overhead of transferring data via remote servers and
lock processes for performance reasons.

B. Atlas DAQ Prototype -1 Configuration
Databases Architecture

1) Two-tier architecture
It was decided to adopt a two-tier architecture, using a

lightweight in-memory persistent object manager to support
the soft real-time requirements and a full ODBMS (Object
Database Management System) as a back up and for long-
term data management. The two-tier architecture schema is
shown in Figure 5:

I

Full object database
(backup & long-term data management)

Figure 5: Two-tier Architecture for ATLAS DAQ
Prototype - 1 Configuration Databases

provides better performance and portability to embedded
processors running real-time operating systems.

Translators are being developed to move data between the
in-memory object manager and the ODBMS.

OKS has been adopted as the in-memory persistent object
manager and ObjectivityDB [16] as the full ODBMS.

2) Configuration Databases

several interconnected object schemes:
ATLAS-DAQ Configuration,

0 Setup,
Detector Parameters,
Software,
Hardware,
Run Control,
DataFlow,

0 General Run Parameters.
Two schemes (Software and Setup configuration database

views) are shown in Figure 6. The description of its basic
structure is given below.

The SW-Object class is used to describe a software object
from an abstract point of view; i.e. gives the name,
description, default parameters and environment. An instance
of SW-Object class has one or more implementations (i.e.
programs) and may use software resources. A set of User
objects (i.e. DAQ human operators) having the necessary
permissions and privileges to run an implementation of this
software object can be defined.

The Program class is used to describe an implementation
of a software object. A program has a host operating system
type, a name and location of its executable file, and platform
specific parameters and environment variables.

The Process class is used to complete the description of a
software object at run-time, i.e. logical name of the process,
process id, time started, allocated process priority and
privileges. It keeps lists of allocated resources and a reference
to the host computer where it is running.

The Partition class acts as a container to describe all the
hardware and software needed to run the DAQ and allows the
DAQ to support multiple concurrent data taking activities.

The Application class is used to describe an application
that has to start inside a partition. It maps software objects and
computers (the same software object can be started several
times as different processes and on different computers). An
application can have a list of parameters. The possibility to
start or shutdown an application can depend on other
applications (e.g. a server has to be started before its clients).

The Computer class is used to describe a computer (PC,
workstation or embedded processor), that can execute
processes and where it is possible to start applications. It
describes basic parameters such as host name and type of
operating system.

The ATLAS DAQ prototype- 1 configuration databases use

The ODBMS offers many of the long-term management
facilities required such as data versioning, schema evolution,
and authorization control while the in-memory object manager

1962

The Process Class and
a// relafmsps wth It

Figure 6: The schema of the Software and Setup configuration database for ATLAS DAQ prototype -1

3) Data Access Libraries
The use of a DAL (Data Access Library) in DAQ

configuration databases simplifies the interface to the
persistent object manager (Le. OKs or Objectivity/DB),
presents the schema as true C++ objects, hides details of the
underlying persistent object manager and hence allows
applications to be ported between OKS and ObjectivityDB
without modification.

4) Design Database Schemes
The DAQ configuration database object schemes have

been created using the StP (Software through Pictures [17])
CASE tool. The OMT methods supported by StP has been
adopted as part of the development environment for ATLAS
DAQ software [18] and used to model the schema of
configuration databases (via object models). Code generators
have been developed that produce DDL (Data Definition
Language) for ObjectivityDB, native OKS definitions (via the
C++ API) and the DAL implementation on top of OKs from
models stored in StP.

The overall development process for the configuration
databases is shown lnFigure7.

Figure 7. Development Process for ATLAS DAQ Prototype -1
Configuration Databases

1963

C. Code Examples
The examples presented below show code that loads

software and setup configuration database and lists partitions
and corresponding applications. For clarity and size
limitations no error checking is shown. To understand these
examples we assume that reader is familiar with C++ and
container classes.

The first example shows native OKS code and the second
example shows generated DAL code. The DAL and OKS
classes and methods are shown in bold, Rogue Wave
Tools.h++ classes and methods are shown in bold italic
and comments are shown in s m a l l i t a l i c .

2) Generated DAL code
main0 {

/ / I n i t i a l i z e o b j e c t manager
ConfDB conf-db () ;

/ / B u i l d l i s t of p a r a m e t e r s f o r c o n f . d b
RWTPtrSlist<RWCString> params ;
RWCString schema ("schema") , data ("data
params.aggend(&schema);
params.append(&data);

/ / I n i t i a l i z e c o n f . d b
MyConfDaqConf my-conf(conf-db, ¶ms

I) Native OKs code
main0 {

/ / I n i t i a l i z e OKs kernel
OksKernel kernel();

/ / Load d a t a b a s e
kernel. oksLoadSchema ("schema") ;
kernel. oksLoadData ('data") ;

/ / F i n d c l a s s P a r t i t i o n t o i t e r a t e i n s t a n c e s
OksClass *c;
kernel .oksFindClass ("Partition", &c) ;

/ / Make i t e r a t o r o f i n s t a n c e s
RWTPtrHashDic tionaryI tera tor<RWCString,

OksObject> *i = c.oksCreateObjectIterator0;

/ / I t e r a t e i n s t a n c e s
for(;++i;) {

/ / Receive a p o i n t e r t o OKs o b j e c t
OksObject *PO = i.value0;

/ / G i v e s v a l u e s of a t t r i b u t e and r e l a t i o n s h i p
OksData *pName, *pApps;
po-zoksGetAttributeValue ("Name", &pName) ;
po->oksGetRelationshipValue(

"Applications, &pApps) ;

/ / Prints o b j e c t i d e n t i t y and name
cout << "Partition << po->getObjectId()

<< 'I has name '' << *pName
<< and applications:" << endl;

/ / I s a n o b j e c t (a p p l i c a t i o n) i n r e l a t i o n s h i p ?
if(pApps->data.LIST &&

pApps->data.LIST->entriesO) {
/ / B u i l d a n i t e r a t o r f o r l i s t of o b j e c t s
RWITPtrSlistIterator<OksData>

/ / I t e r a t e this l i s t
for(;++j;) {

j(*pApps->data.LIST);

/ / Gives a n o b j e c t f r o m l i s t
OksObject *ao = j->key()->data.OBJECT;

/ / Prints the o b j e c t i d e n t i t y
cout << ao->getObjectIdO << endl;

1
1

1
1

/ / B u i l d l i s t of p a r t i t i o n s we h a v e and i t e r a t o r
RWTPtrSlist<Partition> *pl =

RWTPtrSlistIterator<Partition> i(*pl);
my-conf.getListOfPartition0;

/ / I t e r a t e a l l p a r t i t i o n s
for(;++i;) {

/ / G e t s p o i n t e r t o P a r t i t i o n C++ o b j e c t
Partition *pt = i.key0;
/ / P r i n t s o b j e c t i d e n t i t y and name
cout << "Partition 'I << pt->getOIDO

<< " has name " << pt->getName()
<< and applications:" << endl;

/ / C r e a t e s s l i s t o f A p p l i c a t i o n s i n p a r t i t i o n
RWTPtrSlist<Application> *a1 =

/ / Is the l i s t empty?
if (a1 && al->entriesO) {

pt->createPartitionApplicationListO ;

/ / B u i l d s i t e r a t o r of a p p l i c a t i o n s
RWTPtrSlistIterator<Application> j (*al) ;
/ / I t e r a t e i t
for(;++j;) {

/ / G i v e s an A p p l i c a t i o n C++ o b j e c t
Application *a = j->keyO;
/ / P r i n t s a p p l i c a t i o n o b j e c t i d e n t i t y
cout << a->getOID() << endl;

/ / Deletes l i s t o f a p p l i c a t i o n s
delete al;

1
1

/ / Deletes l i s t of p a r t i t i o n s
delete pl;

1

IV. FUTURE PLANS
Initially we want to improve the support for automatic

generation of schemes from the StP CASE tool and implement
OKS/Objectivity data movers.

Later we intend to investigate a CORBA compatible
Persistent Object Service [19] that will allow the storage of
CORBA objects in OKS and share them between applications
at run-time. This should provide the possibility to implement a
data server for concurrent updates. However this implies
potential network delays.

1964

V. CONCLUSIONS
Based on the results of using OKS for the ATLAS DAQ

prototype - 1 configuration databases we can conclude that
OKS is a suitable object manager to implement configuration
databases. According to our tests it shows high performance,
robustness, compatibility with used platforms and compilers
and supports a sophisticated object model. Our initial survey
failed to uncover an existing object manager that could satisfy
all these requirements. OKS does not support all the features
of a full object database management system but it is
distributed in source code, requires few system resources and
needs only one license for the popular Tools.h++ C++ library.

The two-tier architecture adopted for the ATLAS
prototype project has allowed us to factorize the configuration
data storage needs into an object manager for performance
and portability reasons coupled to the ODBMS for long-term
data management issues.

VI. ACKNOWLEDGMENTS
The following people have used the evolving versions of

OKS in their work on the ATLAS DAQ prototype -1 system
and provided valuable feedback and input: Giuseppe
Mornacchi, Michaela Niculescu and Louis Tremblet for data-
flow, Pierre-Yves Duval for the run control and the process
manager, Ashruf Patel created the original version of
StP/OMT to OKS object model translator, Elisabeta Badescu
and Mihai Caprini implemented the Message Reporting
System database and Viatcheslav Khomoutnikov used OKS
for the ATLAS Control system configuration database.

Y

VILREFERENCES
Tools.h++ Foundation Class Library for C++
programming User Guide and Class Reference, Rogue
Wave Software, Inc., March 1996
An Approach for description and interpretation of
procedural knowledge for complex physical installations,
V.Filimonov, V.Khomutnikov, Yu.Ryabov, Preprint
PNPI #1828, September 1992
A knowledge Based Control Method: Application to
Accelerator Equipment Setup, G.Daems, V.Filimonov,
V.Homutnikov, F.Perriolat, Yu.Ryabov, P.Skarek, Nucl.
Instr. and Meth. A 352 (1994), pp. 325-328
ORACLE Documentation Set, version 6, ORACLE, Inc ,
1994
Quid version 2.0 User Manual, Artis srl, November 1992
ITASCA Distributed Object Database Management
System. Technical Summary for Release 2.1. Itasca
Systems, Inc. 1992
Information on ODE is available through Internet at URL
http://www-db.research.att.com/ode-announce.univ.html
Information on YOODA is available through Internet at
URL ftp:/lftp.uu.net/pub/database/yooda
Object Oriented database system evaluation for the DAQ
system, MSkiadelli, Diploma thesis at the University of
Athens, 1995

[101 Experience using a distributed Object Oriented Database
for a DAQ system, G. Ambrosini, C.P. Bee, M. Caprini,
P.Y. Duval, S. Eshghi, F. Etienne, R. Ferrari, D. Ferrato,
G. Fumagalli, I. Gaponenko, R. Jones, S. Kolos, C.
Maidantchik, L. Mapelli, Y. Merzliakov, G.Mornacchi,
M. Niculescuj, A. Patel, G. Polesello, D. Prigent, Z. Qian,
I. Soloviev, R. Spiwoks, A. Le Van Suu, CHEP'95
conference at Rio de Janeiro, September 1995

[111 ATLAS DAQ software development environment
working group, information is available through Internet
at URL http://atddoc.cern.ch/Atlas/

[121 Design of the Configuration Databases for CERN
ATLAS DAQ Prototype - 1, RJones, M.Michelotto,
A.Pate1, I.Soloviev, ATLAS DAQ technical note 30,
information is available through Internet at URL
http://atddoc/Atlas/Notes/03O/Note03O- 1 .html

[131 ATLAS DAQ Back-end software User Requirements
Document, 1996, is available through Internet at URL
http://atddoc.cern,ch/Atlas/DaqSoft/document/draft_l .ht
ml

[14] The ATLAS DAQ and Event Filter Prototype -1 Project,
G.Ambrosini, D.Burckhart, M.Caprini, M.Cobal, P-
Y.Duval, F.Etienne, R.Ferrari, D.Francis, R.Jones,
M.Joos, S.Kolos, A.Lacourt, A. Le Van Suu, A.Mailov,
L.Mapelli, M.Michelotto, G.Mornacchi, R.Nacasch,
M Niculescu, .K.Nurdan, C.Ottavi, A.Pate1, F.Pennerath,
J.Petersen, G.Polesello, D.Prigent, Z.Qian, J.Rochez,
F.Scuri, MSkiadelli, I.Soloviev, R.Spiwoks, F.Touchard,
L.Tremblet, G.Unel, V.Vercesi, S.Wheeler, A.Wildish,
proceedings of CHEP'97 conference, April 1997

[151 OKS Documentation (User's Guide, Tools & Reference
Manuals), ISoloviev, CERN ATLAS DAQ technical note
33, information is available through Internet at URL
http://atddoc.cern.ch/Atlas/Notes/033/Welcome.html

[161 Using Objectivity/C++, version 4, Objectivity, Inc., July
1996

[171 Information on StP/OMT is available through Internet at
URL http://www.ide.com/Products/StP/StP-OMT.htm1.

[181 Use of Object oriented CASE tools for Automating the
Development of DAQ Software, A.Pate1, X-th IEEE Real
Time Conference, September 1997

[191 CORBAservices: Common Object Services Specification,
Object Management Group, Inc., November 1997

http://www-db.research.att.com/ode-announce.univ.html
ftp:/lftp.uu.net/pub/database/yooda
http://atddoc.cern.ch/Atlas
http://atddoc/Atlas/Notes/03O/Note03O
http://atddoc.cern,ch/Atlas/DaqSoft/document/draft_l
http://atddoc.cern.ch/Atlas/Notes/033/Welcome.html
http://www.ide.com/Products/StP/StP-OMT.htm1

