
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 47, NO. 2. AI'RII. mu) 331

Applications of CORBA in the Atlas prototype DAQ

R. Jones', S. K o l o ~ ' ~ ~ , L. Mapelli', Y. Ryabov'
'CERN, European Laboratory for Particle Physics, Geneva 23, Switzerland, CH-121 I .

'I'NPI, I'etersburg Nuclear Physics Institute, Gatchina Leningrad distr., Russia.
'on lcave from PNPl

Abstract
This paper prescnts tlic cxpericnce of using the Common

Object Requcst Broker Architecture (CORBA)[I] in tlic
ATLAS prototype DAQ project[2]. Many coiiiniunication
links in the DAQ systcm have been dcsigned and implcmentcd
using thc CORBA standard.

A public domain package, callcd Inter-Language
Unification (ILU)[3] has bccn used to implement C O R M
based communications between DAQ componcnts in a local
arca network (LAN) of hetcrogcncous computers.

The CORBA Naming Service[4] provides the principal
mechanism through which most clicnts of an ORB-bascd sys-
tcm locate objccts that they intend to iisc. In our project,
conventions arc employed that meaninglhlly partition the namc
space of the Naming Servicc according to divisions in thc
DAQ system itself. The Inter Proccss Communication (IPC)
package[5], implcmented in C-I-t 011 thc lop of CORBAIILU,
incorporates this facility and hides tlie details of the naming
schcnia is described. Thc devclopment proccdure and
environment for rcmotc databasc access using IPC is
described.

Various end-user intersaccs have bcen iinplcmentcd using
thc Java language that communicatc with C t t servers via
CORBAIILU. To support such intcrfaccs, a second
implemcntation of II'C in Java has been developed. Thc design
and implementation of such connections are dcscribcd.

An altcrnative CORBA impleincntation, ORRacus[b], lias
bccn evaluatcd and compared with ILU.

1. INTRODUCrION
The ATLAS prototypc aims to design and implenicnt a

DAQ/Evcnt Filter (EF) prototypc[2] based on thc
TriggeriDAQ architecture dcscribcd in thc ATLAS Technical
Proposal[7] and to support studies of tlic full system
functionality. A requirements docunicnt[8] Itas becn writtcn
for the back-end software which covers the nccds of thc
prototypc DAQ.

The Objcct Management Group's (OMG)[O] CORBA
standard has bccn considered as one of thc candidates to form
the basis of all inter-component commimiciitions for the back-
end DAQ. Tlie ILU systcm has bccn choscn as a CORBA
implementation and cvaloatcd. The rationale far the choice of
a frcc CORFJA implementation was that it sccms unlikely tliat
we could find a commercially supported CORBA product for
all front-cnd platforms uscd in tlic ATLAS DAQ. We nccded
an implementation that was distributed in sourcc code form so
that we could port it to ncw platforms as required. ILU has in
addition some nice features which arc explained in tlic
ovcrvicw below. Thc ILU cvaluation[lO] showed that thc

COllBA standard as iinplcmentcd by ILU satisfics the back-
cnd DAQ coinmunication requircments.

During setup and tcsting pcriods, many groups of pcoplc
will work in parallel and requirc the iisc of various DAQ
rcsourccs. Tlie concept of a DAQ partition was introduced to
provide a context in which DAQ sonwarc components can
opcrale in perallcl with other partitions without intcrference.
The operator may crCatc and modify niulliplc partitions.

The package called Inter-Process Communication was
devclopcd on the top of ILU in order to support paiiitioiiing of
the software componcnts cammimication. IPC
implementations exist for both C-l.-t and Java languages.

Most communication for the back-end DAQ is
implcmcnted on top of the IPC package. As an example of a
back-end DAQ component that uses IPC, the Remote Databasc
(RDR) access packagc[I I] is dcscribed.

Thc DAQ lntcgratcd Graphical Uscr Interface (IGUI) is
now under development. It is implemcntcd in Java and
commnnicates with C t t applications viii CORBAI ILU using
the IPC package.

11. OVERVIBW OF ILu SYSTEM

The Inter-Language Unification (ILU) systcm is a multi-
laiiguage object intcrfacc systcni. Tlic object interfaces
providcd by ILU hidc implementation distinctions bctwecn
different languages, between diffcrcnt address spaces, and
bclwccn diffcrent opcrating system typcs. ILU interfaccs can
be spccificd i n tlic OMG's CORRA Interface Definition
Language (CORBA IDL).

ILU 2.0 provides inappings for sevcral programming
languages including C++, ANSI C, Python, Java, and Common
Lisp. 1I.U has bccn installcd on most flavors of UNIS (SunOS,
Solaris, IIP-UX, AIS, OSF, IIIIX, FreeBSD, Linux, LynxOS,
SCO Unix, etc.) and MS-Windows (3.1, 95, NT). It supports
both threaded (POSIX, Solaris, NT, ctc.) and event loop (Xt,
Tk, XView) operation.

Tlie current relcasc includes support for the CORBA
Internct Inter-ORB Protocol (IIOP).

111. OVERVIEW OF CORBA NAMING SERVICE
Onc of thc tirst CORBA Scrvice specifications proposed

by OMG was thc Naming Service. It defines a federated
(hierarchical) naming service which is explained below.

A name-to-objccl association is callcd a name binding. A
namc binding is always dcfincd relative to a naming context. A
naming context is an object that contains a set of nainc
bindings in which cacli namc is unique. Different names can
be bound to an object in tlie Same or differcnt contexts at thc
same time. To rcsolvc a namc is to determine tlie object

0018-9499/Ofl$10.00 D 2000 IEEE

332

associated with thc name in a given context. To bind a namc is The IPCPartition class incorparatcs tlic Naming Servicc
to create a name binding in a given context. A name is always facility. 11 assigns a namc to the objcct that inherits from
resolved relativc to a context, there are no absolute nanics. IPCTrueObjcct class and makes this namc-to-objcct
Because a context is likc any other object, it can also bc hound association publicly available. Latcr the refercncc to this object
to a namc in a naming context. Figure 3 in the ncxt Section can be obtained by calling the IPCParfition::iookif~~ mcthod
shows an example of a naming graph. with the object namc as a paranictcr. The IPCServer class

The CusNaminy Module is a collection of interfaces that
together define the naming sewice. This modulc is described
in CORBA IDL and contains two interfaces:

Thc NamingConfext interface - allows objccts bindings
and namcs resolution;

The BindingIferafor iutcrface - allows itcration through
the bindings.

IV. IPC PACKAGE
IPC providcs a way to run scvcral instances of components

bclonging to different contcxts (partitions) in parallel. IPC
simplifies the dcvelopmcnt proccss and minimizes the
dependcncies on a particular CORBA implementation.

A. IPC Partition definition
The tcrm Partition has a complcx cxplanation in thc context

of a full DAQ system. The IPC Partition is defined in relation
to the software objects participating in communication. This
definition is not in contradiction with thc general one and docs
not impose any restrictions on it. The IPC Partition acts as a
namespacc for thc communicating objccts and satisfies the
following rules:

Each object belongs to one and only one partition;

Bach object has an idcntifier which is unique insidc
partition;

Each object can be accessed from anywhere by it's
identifier and the idcntifier of the partition it belongs to.

B. IPC Architecture
The IPC Object Model diagram is shown in Figurc I

plays two roles. It Services thc application's external
connections and internal alarms using the ILU cveiit loop. It
also defines the namespacc for the object namcs allowing
additional flcxihility for objcct identification. I h c
IPCPnrfifionIfernfor allows sequential access to all the
availablc partitions. The IPCServevllerofor ailows iteration
through all the se~vcrs in the current partition.

C. IPC Implementation
Thc IPC iniplcmeiitation is provided in the form of a

library based on the CORBA Naming Service. It exists in both
Ctt and Java.

An IDL definition provides a rcmote objcct destruction
facility (Figure 2).

The ipc::fieeable intcrfacc is implemented by the
IPCTrueObjecf class. The virtual destroy method iiiheritcd
from the IPCTrueObjecl class can he uscd to implemeiit
application specific termination.

module ipc {
interface freeable {

oneway void destroy0;

Figurc 2: IPC interface declaration (CORBA IDL)

A partition is rcpresentcd by the Naming Server
application. Each back-end DAQ component has a uiiiquc
context identifier which is bound in tlie partition with a naming
context objcct. For each object belonging to this compoucnt
thcrc is a name binding in this context, Figurc 3 shows an
example of the intemal layout of the partition servcr.

i n p L m MHS

& ' C O Contrnllcr A Coiitrnllcr B

IPCPartilion Figurc 3: An Example of II Naming Graph for B Partition Scrvcr

publish
Witlidraw
lookiip
CetScrverList

J

Thcrc are threc contexts for the DAQ coniponents sliown in
Figure 3, namely:

Run Control (RC) with two controller objects;

Figure 1: IPC Object Model Diagram (OMT natation). Informatioii Servicc (IS) with one objcct which supports
Run Control dynamic information distribotion;

333

Message Reporting Systcm (MRS) with one object which
implements message distribution.

I) .Java i~nplemrentnfion

‘The lava IPC package implcmcnts a11 the classcs shown on
I’igure 1. For tlie currciit implementation we have used SDK
1.2[12] and idltujava version 1.2[13], both products of Sun
Microsystcms.

The implementation is provided as a l av ;~ packagc called
ipc. Figure 4 shows tlie classes in this package.

ipc.

Partition

PartitionIterator

Server

ServerIterator

Trueobject

Figure 4: The sLnict~irc olthc J n w IPC I’ackage

D. IPC test resulls
The C+t IPC implcmcntatioii was tested on all tlic plat-

forms supported iii back-end DAQ for functionality,
pcrrormancc and crror rccovcry facilities. The ovcrlicad of
using IPC against pure ILU was investigatcd.

The results o f thc performance tcsts show that there are
practically no pcrforinancc diffcrcnccs between IPC and pure
ILU. The tcsts show that IPC works reliably with sufficient
pcrforniancc cvcn For configurations with up io 250 clicnts
communicating with tlic samc servcr. The tcsts with larger
nuiiihcrs of clients wcrc not perrormed bccansc tlicy nrc
beyond the nceds of tlic cumin DAQ prototype. It was
discovered tllat cvcn for tlic biggcst configuration expectcd,
tlic communication time grows linearly with tlic numbcr of
aoolications involvcd in communication with thc same server.

proccsscs on the samc milchilie or diffcrcnt machines. Thc
RDB’s API is independent of a particular Pcrsisteiit Object
Managcr and database schema.

Independencc from the database schema means that RDB
can provide an intcrface for database mcta-informationi
acccss. It allows multiple clients implemcntcd in different
programming languages (C++, C, Java) to access thc same
databasc simultancously.

A. RDB Architecture and I~iincfionulity
Figure 5 shows the Object Modcl of KDB. Tlic Cursor

class interacts with the databasc rctricving thc neccssary
information which was rcquestcd via it’s methods.

getAllClnsrri
getAIISuprrClasrm
getAllSabClns~es
pethltributct

gctOlijectsOfClilss
p c l O ~ j ~ c t a O ~ ~ e l r t i o l l s l l i ~
gelV;II~CSOfAttTL~Ite

Pigrirc 5 : RDU Object Modcl Diagram (OMT nolalion)

The first six tiiethods of the cursor objcct arc intcnded to

Mch-information for a specific class: nanic, dcscriplion,
number of attribiitcs and relationships;

Mcta-information for a specific class attribute: name,
description, type, multiplicity;
Mcta-information for a specific class relationship: name,
description, cardinality constraints, class name it relatcs
to.

Usiiilr meta-information it is nossiblc to access tlie valucs

rctrievc the following mcta-infomiation from the database:

.. I

The fllnctionality and codc show the cnrrent of specific attributes and rclntionships of spccific objccts. The
implcrnentation is and stable ellough to be Cursor class providcs three methods to access database

information: for communication uiimoscs in the DAO environment. . .
A detailcd explanation of test itcins and ~CSUIIS c m bc Get a list of all the instances of a class;

Get a11 thc valucs lor a relationship o f a specific class
instancc;
Get all thc valucs for an attribute of a specific class

found iii 1141, [15].

V. KDB PACKAGE
Many conipoiiciits of tlie DAQ system rcquirc database

access. Sonic or them acccss thc database directly using its
native API. Bui applications which are implcmcntcd iii a B. RDBServer Implementation
p r o g r a n ” languagc that is not supported by the daiabasc
tool nccd another mcans of ~ m c s s . Another reason to liiive
rcmote acccss lo a database is to avoid the need for a common
filc systciii for all tlic applications i n tlic DAQ system. The
RDB package defines and implciiients an inlcrfdce to read
database information.

The RDB inlplclncntation is oll tile IPC package, It is
in form of a C++ library with an intcrfacc

declaration ill [DL (rdb.id,), It dcfilles the module
rdb with onc interfacc called cursor which dcclarcs all tlie
methods showii on Figure 5 . ‘lhc cursor intcrracc inherits from
the i ,x : f icmhlc interface. Fiaurc 6 prcsents tlie ecneral . .. - -
striicture of thc rdb.idl filc. B. RDB Requirements

The RDB packagc is iiitcndcd to provide applications with
read- only access to a database rcgardlcss 0 1 tlicir locetion: in
the samc proccss as tlic Persistent Object Managcr, different

’ Mcla-informlion is information about dabtbw schema, i.c. B
dcscriplion of classcs and their relationships.

#include "ipc.id1"
module rdb{

// v a r i o u s structures
// are declared here

interface cursor: ipc::freeable{
// methods a r e declared here

.

....
);

1;

Figure 6: IDL declaration for RDB

The class rdb-T-cursur is generated by thc IDL to C-H
translator lrom rdb.id1. The KDBServer Class inherits from the
rdbLT_rursor class and provides implementations for all the
methods. l h e class II'CPartition from the IPC pzckagc is uscd
to provide a way of splitting the information bctwceii different
partitions. Classes IPCScrver and LPCTrueObjccl arc iiscd as
base classcs for RDBServer iii order to support scrvcr anima-
tion and IPC object implementation respectively.

Figure I shows all the cliisscs in the RDD library and their
relationships.

~~ ~ ~~ ~~ Fl PIPCSCrYer] /1I~CTracObject/ L RDDScrvcr

Pigiirc I : l h c RUH Impleomntnrian clilsscs (OMT nuliilioo)

There is no hand-wrilleii code for thc cliciit part of the
library. So in order to retrieve information from tlic rcinotc
database server the class gcncratcd by IDL compiler is uscd
directly. This class is callctl rdlj-T-cur,vor for C t + and
rdh.cursur for Java. The instance of s~icli a class can be
obtaincd in the cliciit program by using the lookup nicthod of
the IPCParlilion class. Call to any method of this cI
its invocation with the same signalurc on thc rcspcctivc
instancc of thc RDBServer class. It is done transparcntly via
ILU.

VI. INTl?GRAlED USER 1NTERFACE

We are currently using tlic OMG IDL language to specily
component interfaccs and the IDL compilcr to gcncratc C ~ + t
code from these spccifications. Such interfaccs are defined for
the following componciits: Information Scrvicc (IS)[16],
Messagc Reporting System (MRS)[171, Proccss Managcr
(PMG)[181, Run Control (RC)[191 and llcmotc Database
access (RDB). All these componcnts arc implcmcntcd on top
of tlie IPC package.

The Integrated Griiphic User Intcrfacc (IGUI) rcquircs
interaction with all the componcnts mcntioncd above. As it is
implemented in Java, a Java vcrsion of IPC was providcd. Thc
IGUI application uscs the Java IPC package and additional

Java code gcnerated by the IDL-to-Java compiler from the
IDL specifications ofthc back-end packagcs.

A . lGUl Requirements
The IGU1[20] presents thc status of the DAQ system to thc

human operator and provide a mcam to display the status of
individual sub-systems and components. [Jscr identification
and access control arc applied before sending coinmands to the
DAQ system.

B. IGUI Architecture
Figure 8 prcscnts the hasic coiilcxt diagram for the IGUl

showing the cxcliaiigcs of information with thc other back-end
subsystems.

Configsratius r;Fl p j l
vu8 ,iarn,,*ele,.s
conirol confisiriiriion cninonf1.v
delecror conJiEurirrion

L

Process

Figure 8: IGUI Conlcxl Diagram

A. IGUI Implementation
Thc currcnt vcrsioii of IGUI uscs JDK 1.2 and iclltojava

The 10111 application is able lo:

version 1.2 kom Sun Microsystcnis.

Send commands to the DAQ supervisor and RC

Receive MRS messages; .

Show the currcnt partition and lists others:

controllers;

Show the IRC trcc with controller's stahis;

Show ii list of Process Managcr Agents and proccsscs
startcd by tlicm.

VU. EVAI.UATION 01' ORBACIJS
Thc purpose of the ORBacus evaluation was to comparc an

alternative CORBA implcmcntation with ILU currently in use
in tlic DAQ. 'I-hc motivation for thc evaluation was to gain
expcricncc with vcrsioii 2.0 of the CORBAIIIOI' standard
sincc it is not liilly supported by tlie ciiricnt version of ILU. I n
addition, ILU lacks some CORLIA scrviccs tliat polcntially
could bc used within tlic DAQ. For cxaniplc wc have made our

own implementation of the CORBA Naming Scrvicc bccansc Thc DAQ makcs usc of tlic l lOP prolocol with ILU. This
it was not providcd by ILIJ whcii we started tlic project. allows intcropcrability with otlicr CORBA brokcr

iniplcmcntations. For cxamplc, currently we arc using a
A OR Rrrrtm ovorvicw CORBA irnplcmciitation includcd in JDKI.2. We are able to _.l

ORBacus is a robust, kll-fcaturcd objcct request brokcr
provided by tlic OOC company. ORBacus is Ciilly-compliant
with thc CORBA 2.0 specification[2I], including tlic C+i- and
Java mappings[22]. ORDacus supports evely featurc of
CORBA IDL with no omissions. ORBacus uscs HOP as its
native protocol and also has an open architecture that allows
the devclopment of othcr protocols for usc with tlic ORB.
ORBacns includcs a robust, fiilly fcatnred Intcrface
Repository. ORBacus includes C+t and Java iinplcmcntations
of three standard OMG services: Naming, Event and Propcrty.

ORBacus has very good support and iiiaintciiancc as wcll
as excellent docnnicntalion. OOC sell thc same ORBacus
version as is available frcc for non-commercial use. It is
disfributed in sourcc code and supports a number of popular
operating systems aud compilers.

B. Evaluation results
We installcd ORBacus version 3.1.2 for the evaluation on

LynxOS, Linux and Solaris using various compilcrs. Apart
from installation problcms on LynxOS with the oldcr GCC
compilcr[23] (vcrsion 2.7.2 which is not officially supportcd
by Ol<Bacus), ORBacus worked well. It showcd similar
performancc characteristics to ILU for basic communication
using thc IIOP. The cvaluation will con[inuc to cxplore tlic
CORBA Scrvices wlicn thc coinpilcr Sihlatioli on LynxOS
improvcs.

VIII. CONCLUSIONS
Ten CORBA based intcrfaces havc been dcfiiicd for DAQ

components including IPC, IS, MRS, Process Managcr,
Resource Manager, Rcmotc Databasc Access and Ruii Control
using thc IDL language.

nhscd on the results of components iniplcmcntations, wc
can conclude that CORBA is suitablc as a incatis of providing
inter-process coiiiinunicatioii for the ATLAS prototype DAQ
back-end. CORBA providcs a high-level standard meails of
communication. Following this standard sirnplifics tlic
modeling and subsequent realization of complex
communicatioii systems as wcll as giving B iighcr level of
code poitability.

In comparison with dircct socket programming CORBA
gives inany advantagcs, namcly:

Advanced objcct addrcssing schema;

Connnunication protocol independence;

Transparent data marshalling.

CORBA impleincntations lack pcrformaiicc in coinp auson .'
with using a TCPIII' intcrfacc directly. Gcncrally thcy are
about 30% slower[24]. None the less, it is possible to achicvc
with CORBA the pcrforniancc necessary for DAQ control
purposcs.

Simple and cfficiciit conncction niaiiagcinciit nicclianism:

usc Java clicnts interfaced lo existing C t ~ I - scrvcrs
Tlic Naniiiig Servicc has provcd very uscful for object

addressing in the DAQ. Thcrc arc also some othcr services,
specified in tbc latcst C O R M standard revision, which could
bc uscful in the DAQ: Gvcnt, Pcrsistencc aiid Relationship
Serviccs. Wc intend to study alternative CORBA
iniplemcntations which includc such scrviccs.

1X. ACKNOWLEDGMENT
l'hc authors would likc to thank all of their colleagucs in

the ATLAS protolypc DAQ project for providing valuablc
input during the design of tlic back-cnd components. In
particular we would likc to thank Igor Solovicv for his liclp
with the RDD Packagc interfacc definition, Mihai Capriiii and
Lorcnzo Moncta for tlicir work on the usc of the IPC within
the IGUI. Frcderic llogbe dcscrves spccial thanks for the
ORRacus evaluation.

X. REFERENCES
[I] CORBA, lillp:llwww.omg.org/cor~~ l

[2] ATLAS DAQiEvent Filter Protolypc - I Project, CERN,
http:/iatddoc,ccrii.cbii\tlas /

[3] ILU by PARC Xerox Co., ftp:/l
ftp.parc.xcrox.coinlpiib/ilulilu.litnil

[4] CORBA Naming scrvice specification, flp://
www.omg.org/pub/docs/formal/97- 12- I0.pdf

[5] S.Kolos, ATLAS DAQ Prototypc -1 Technical Notc 75,
Intcr Prociss Communication packagc, http:l/atd-
doc.ccm.cli/Atl~1sMotcsi075iNotc0?5-l .html

[6] ORBacus home pzgc, http://www.ooc.comlob/

[7] ATLAS Tccluiical Proposal, CBIW/LllCCl94-43 (ISBN
92- 9083-067-0)

[XI ATLAS DAQ Ilack-cnd software llser Rcquirctnents
Docurncnt. http://atddoc.certi.ch/Atlas/DaqSofl
ldocumcnt/drai"- I .html

[9] The Object Management Group, http:l/www.omg.orgl

[IO] S. Kolas, Intcr-coniponcnt coinmimication in tlic ATLAS
DAQ back-end software (cwiltiatioii of thc ILU multi-
language objcct intcrl'acc systcni), ATLAS DAQ
Prototypc -1 Tcchnical Note 3, http://atddoc.ccrn.chiAt-
lasiNotcsi0031 Note003- I .html

[I l l S. Kolas, 1. Solovicv, Rernotc Database Acccss library
Users Guidc, ATLAS DAQ Prototypc - I Tcchnical Notc
122, http:l/atddoc.cer1i.cli/Atl~1s/Notes/122Motc122-
I.html

[I21 JAVA TM 2 SDK, Standard Edition, http://www.java-
soft.coin/producls/jdkll.2/

[131 Java IDL Documcntalion, http://java.sun.coinlpro-
dncts/jdldl.2/docs/giiidclidl/indcx.htnil

omd

http:/iatddoc,ccrii.cbii\tlas
http:l/atd
http://www.ooc.comlob
http://atddoc.certi.ch/Atlas/DaqSofl
http:l/www.omg.orgl
http://atddoc.ccrn.chiAt
http://www.java
http://java.sun.coinlpro

336

[14]D. Burckhart, S. Kolos, Test Plan of the Inter Proccss
Communication packagc for the Atlas DAQ Prototype -I,
ATLAS DAQ Prototype -1 Technical Note 103,
http:iiatddoc.cern.ch/i\tlasiNotesl103lNotclO3- I .html

[IS] S. Kolos, 'Test Report of thc Inter Proccss Comn1unication
package for thc Atlas DAQ Prototype -1, ATLAS DAQ
Prototypc -I Technical Note 123, http:liatddoc.ccrn.clil
Ailas~otcsl123lNotc123- I.html

[161 S. Kolos, Iniplcmcntation of thc Infonnation scrvicc,
ATLAS DAQ Prototypc -1 l'cchnical Note 37, http:llatd-
doc.cern.clilAtlaslNoteslO37Motr037-1 .html

[17]D. Burckhart, M. Caprini, S. Kolos, R, Jones, A. Radii
Users Guide and Implementation of thc Message
Roporting Systcrn for the Atlas DAQ Protolypc -1,
ATLAS DAQ Prototype - I Tcchnical Note 59,
http:liatddoc.ccm.chl AtlaslpostscriptiNoteO59.ps

[IXIP-Y. Duval, L. Cohcn, Uscrs guide for the Proccss
Managcr, ATLAS DAQ Prototype -1 Technical Notc 81,
1ittp:ii atddoc.ccrn.cl~lAtlaslNotcslO8 IiNotcOX I - I .hlnil

[19]Run Control Uscr's Guide, ATLAS DAQ Protorype -1
Tcchnical Note 107, h1lp:~lzatddoc.cem.chiAtlasINotcsl
107iTiotc107-1.html

[20] Integratcd Graphic User loterfacc (IGUI) User
Requircmcnts document, http:llatddoc.cern.chiAt-
IasiDaqSofticomponentsIgiiilGUI~iir. lhtml

[21] The Common Object Request Broker: Architecturc and
Specification lkvision 2.0, (OMG Document 97-02-25)

[22] IDLiJava Language Mapping, (OMG Document 97-03-

[23] The GNU C Compiler, http:ilwww.gnu.orgisoft-warelgccl
gcc.html.

[24] A. Gokhalc, U. Schmidt, Washington University,
Measuring the Performance of Communication
Middlewarc on High-Spced Networks, submittcd to IEEB
Transactions on Computing,
littp:ilwww.cs.wustl.edi~l-schmidtii~Uieee~tc-97,ps.g~

01)

http:iiatddoc.cern.ch/i\tlasiNotesl103lNotclO3
http:liatddoc.ccrn.clil
http:llatd
http:liatddoc.ccm.chl
http:llatddoc.cern.chiAt
http:ilwww.gnu.orgisoft-warelgccl

